Can pre-registration lead to better reproducibility in ML research?

Joelle Pineau

Facebook AI Research (FAIR) School of Computer Science, McGill University Mila, CIFAR

NeurIPS 2020 workshop: The pre-registration experiment: an alternative publication model for machine learning research

December 2020

"**Reproducibility** refers to the ability of a researcher to duplicate the results of a prior study....

National Science Foundation, 2015.

Reinforcement learning (RL)

Environment

Learn $\boldsymbol{\pi}$ = strategy to find this cheese!

- Very general framework for sequential decision-making!
- Learning by trial-and-error, from sparse feedback.
- Improves with experience, in real-time.

25+ years of RL papers

One particular experiment

One particular experiment

Both are same RL code with best hyperparameter configuration!

6

How should we measure performance of the learned policy?

Confidence interval?

$$\frac{1}{2} 1.96 \frac{\sigma}{\sqrt{n}}$$
 How do we pick *n*?

7

 \bar{X}

How many trials?

Work		Number of Trials
(et al. 2016)	top-5
	et al. 2017)	3-9
(et al. 2016)	5 (5)
(et al. 2017)	3
(et al. 2015b)	5
(et al. 2015a)	5
(et al. 2017)	top-2, top-3

8

Consider the case of *n=10*

Consider the case of *n=10*

- Strong positive bias: seems to beat the baseline!
- Variance appears much smaller.

We surveyed 50 RL papers from 2018 (published at NeurIPS, ICML, ICLR)

	<u>Yes:</u>
 Paper has experiments 	100%
 Paper uses neural networks 	90%
 All hyperparams for proposed algorithm are provided. 	90%
 All hyperparams for baselines are provided. 	60%
• Code is linked.	55%
 Method for choosing hyperparams is specified 	20%
 Evaluations on some variation of a hold-out test set 	10%
 Significance testing applied 	5%

Should we do more pre-registration?

Pros:

- Explicit and detailed record of experimental methodology.
- Peer feedback on methodology alone, earlier in the process.
- More reliable measurement of performance and generalization.

Cons:

- Two-stage review (pre-/post-results). Slower to produce results.
- Difficulty ensuring results were not generated previously.
- Enabling more exploratory ("understand") research work.

A case study of RL for adaptive neurostimulation (2008-2013)

A case study of RL for adaptive neurostimulation (2008-2013)

A case study of RL for adaptive neurostimulation (2008-2013)

Training data (N=8) from periodic strategies.

6 months

Testing data (N=11) from RL strategies.

6 months

24 months

Self-registration: A case study of ML for Organ Transplantation (2019)

N=75 patients, split into 50 train / 25 test.
 Lock-up the test data!

Self-registration: A case study of ML for Organ Transplantation (2019)

- N=75 patients, split into 50 train / 25 test.
 Lock-up the test data!
- Apply ML methods. Write the paper.
- When all is done, pull out test data and repeat the testing procedure.

https://houseofbots.com/news-detail/2449-Ranking-Popular-Deep-Learning-Libraries-for-Data-Science

Self-registration: A case study of ML for Organ Transplantation (2019)

- N=75 patients, split into 50 train / 25 test.
 Lock-up the test data!
- Apply ML methods. Write the paper.
- When all is done, pull out test data and repeat the testing procedure.

https://houseofbots.com/news-detail/2449-Ranking-Popular-Deep-Learning-Libraries-for-Data-Science

What then?

- Get more data.
- Get much more data!
- Try a different model? (That requires more data too.)
- Move on to another project...

Discussion

- Can we narrow down the criteria for what type of study should be preregistered?
- Does pre-registration make sense when experiments are so cheap?
- Can you re-pre-register? (aka What is the "resubmission" policy?)
- Should we have two separate research teams, one registering a methodology, and one executing the methodology to produce results?
- What is the threshold for a negative result to be informative / interesting? How do we weed out trivial / uninformative results?

Thank you!