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Abstract

Data Augmentation (DA) methods are widely-used in various areas of machine
learning, and have been associated with the generalization capabilities of deep
neural networks. Data Augmentation incorporates certain invariances and Inductive
Biases (IBs) into models by applying transformations that are aligned with the task
at hand, and extends the training samples beyond the training set. Models trained
on augmented data are then equipped with the priors incorporated by these IBs,
allowing them to better generalize onto unseen examples. In addition to inductive
bias, data augmentation methods introduce randomness, to increase the variety of
augmented data, and prevent overfitting. However, in the literature the success of
DA has been mostly associated with the choice of IBs, and the role of randomness
has been mostly ignored. In this work, we investigate the role of randomness
on the regularization effects of DA, by taking the number of augmented samples
required to achieve a certain performance improvement into account. We provide a
hypothesis that regularization effects of DA are not only due to IBs used, but that
randomness has a causal effect in regularizing models incorporating DA. Further,
we provide an experimental protocol to test and validate our hypothesis, comparing
different popular DA algorithms. Finally, using our proposed protocol we evaluate
different DAs under limited randomness, measuring the alignment of their IBs w.r.t
the data and the task at hand.

1 Introduction

Data Augmentation (DA) is one of the main building blocks of Deep Learning which has been used
from the early stages [19] in many areas such as Machine Vision [32], Medical Imaging [3], Audio
Processing [30], Speech Recognition [26], Natural Language Processing [11], and many more. DA
introduces certain “Inductive Biases” (IBs) into models as prior, that are often aligned with the
distribution of the data, and the task at hand; extending the training data by applying stochastic
transformations on samples. Using DA, certain invariances can be built into models during learning,
mainly without the need for altering the model architecture (e.g, randomly rotating training samples
could result in a rotation-invariant model).

The main difference between DA algorithms has been reported in the literature to be in the different
IBs they introduce to models. For example, some DA methods create new samples by linearly
combining existing data and labels with a randomly chosen weight [40], while some others [9] erase
some randomly-chosen parts of input to make the models robust towards missing information in data.

While many of these IBs are based on heuristics [39, 15, 40, 36, 9], some DA methods learn
invariances and IBs that are suitable for the task from data [8, 2, 22, 13, 21], or learn a proxy
distribution of the training data using generative models [1, 41], and further generate additional data
by randomly sampling the generative model. In [4] DA has been studied more fundamentally, under
a group-theoretic formulation. They explain that in empirical risk minimization (ERM), using DA
leads to minimizing an augmented loss, which is the average of the original loss under a group action
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Figure 1: a) The causal graph of the relationship between IB and Data Augmentation Regularization
(DAR), which has been mainly investigated in the literature. b) The extended causal graph including
the causal effect of randomness (RND).

that is acting on data. They show that due to the averaging over the group orbit (e.g., all random
rotations of a sample) DA results in variance reduction, with a cost of introducing a bias that is related
to the IB used in the DA.

As discussed above, it can be seen that in addition to the IBs used in DA algorithms, they all have one
thing in common: Randomness. However, in all the previous work in the literature, this factor has
been mostly ignored; often a fixed amount of randomness has been kept throughout training, and the
relationship between randomness and the regularization the DA introduces to models have not been
studied (see Figure 1.a). In this work, we investigate the role of randomness on the regularization
effects of DA by intervening on the randomness in the data augmentation process, through limiting
the amount of randomness in DA, and studying the causal effects of randomness on the regularization
effects of data augmentation (see Figure 1.b). More specifically, we would like to answer the following
questions:

1. Does randomness have a causal effect in the regularization effects of data augmentation?

2. Can limiting the randomness effect in DA enable us to better evaluate inductive biases in
data augmentation without the interference of randomness?

3. Can such evaluation under limited randomness be useful for measuring the alignment of an
IB of a DA w.r.t the data and the task at hand?

2 Related Work

The availability of large amounts of data has been shown to be instrumental to the success of machine
learning models. In [29] it was shown that the performance degradation in a model’s prediction on
data with corruption and perturbations (robust performance) disappears with the use of more data.
Additionally, [31] demonstrate that training robust models requires polynomially more data than
standard training. And in [23] the authors empirically demonstrate that by using larger models and
more data, the performance of adversarial training of models can be improved.

The aforementioned work highlights the importance of additional data for training models. Where
sufficient data is not available, data augmentation is a popular technique for creating additional
training data, becoming an important factor in the success of data-hungry models such as deep neural
networks. However, in a study [10] shows that the robustness of data augmentation methods may
differ based on the inductive bias they infuse into models. They analyse data augmentation techniques
such as heuristic-based augmentations and generative models, and show that data augmentations have
a significant impact on the models not only in terms of the performance on a downstream task, but
also in terms of the formation of their decision boundaries, as well as their adversarial robustness.
[12] analyse Mixup augmentation [40], and show that it is primarily established empirically, and
its effectiveness have not been explained in depth. They show that MixUp results in a form of
“out-of-manifold regularization”, which imposes certain “local linearity” constraints on the model’s
input space beyond the data manifold. They identify a limitation of MixUp, called “manifold
intrusion” which is a form of under-fitting that results from conflicts between the synthetic labels of
the mixed-up examples and the labels of original training data. [28] shows that heuristics-driven data
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Figure 2: A simplified example of a non-aligned vs. aligned inductive bias (IB) in DA. The augmented
examples are denoted with a hatched pattern.

augmentations are limited: these techniques tend to produce samples that are not complementary to
the training set. In addition to the use of DA to incorporate invariance into models, there has also
been a parallel body of work that focuses on designing architectures that are invariant/equivariant by
design [5, 7, 6, 20, 24, 34, 35, 37, 38]. Such models can also achieve invariance, without the need of
DA.

3 Definitions

Following [4], we define DA as a group action acting on the data space. Consider observations
X1, . . . , Xn ∈ X (e.g., images) sampled i.i.d. from a probability distribution P on the sample space
X . Consider a group G of transforms (e.g., the set of all rotations of images), which acts on the
sample space: there is a function φ : G× X → X , (g, x) 7→ φ(g, x), such that φ(e, x) = x for the
identity element e ∈ G, and φ(gh, x) = φ(g, φ(h, x)) for any g, h ∈ G (we write φ(g, x) ≡ gx for
notational simplicity).

Assuming that our data is invariant to certain transformations such as those in G, for any group
element g ∈ G and almost any X ∼ P, we have an “approximate equality” in distribution:

X ≈ gX. (1)

In supervised learning, approximate equality means that the probability of a sample being from a
specific class is approximately the same as the probability of its augmented sample.

4 Problem Statement

In DA, usually training samples are augmented using some transformation g to extend the training
set. But this transformation is often applied with randomness. For example, if the DA adds a small
amount of noise N to a sample X , then this noise is randomly drawn from a distribution. Every time
X is augmented, a new noise vector is observed, hence creating a different augmented data point
gX = X +N . In this instance, the inductive bias introduced by g is that changing the sample by a
small amount will not negatively affect the characteristics of the datapoint X w.r.t the task at hand
(e.g, X +N won’t cross the class boundary). Hence adding this small amount of noise is aligned
with the task and the data at hand. However, if the amount of additive noise increases so much that it
changes the class of the augmented datapoint, this IB is not aligned with the task anymore.

We provide a simplistic example in Figure 2 to visualise the case explained above. The task in this
example is to separate the two classes denoted by blue and green dots (left figure), and we follow the
simplistic DA defined above (adding noise). In the middle, we show an example where the DA is not
aligned with the task and data. As can be seen, augmented samples are often crossing the boundary
between the two classes. On the right, we visualise applying a DA that is aligned with the task and
data. Hence, the small additive noise never causes the augmented samples to cross the boundary. For
both cases, we also show a decision boundary of a model trained on the original training plus the
augmented samples. We can observe that the decision boundary of the model trained with aligned
DA (right) better separates the two classes than the one trained with the non-aligned DA (middle).
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5 Proposed Experimental Protocol

During training, every time a new transformation configuration is sampled, and consequently, a new
augmented data is being created. Hence, in model updates, the original training samples are used
several times, while each unique augmented sample is being used only once, due to the differences in
the specific augmentation configuration chosen.

To evaluate the hypotheses detailed in Section 1, we propose a setup where an augmented sample is
used to update the model several times. In the other words, we limit the number of unique augmented
variants gX created from a training sample X . This way, we can control the amount of randomness in
data augmentation, and consequently, in the underlying models using them. To this end, we evaluate
models under the following regimes:
1) Maximum Randomness Regime (MRR): each augmented sample is used in the model update
only once. In the other words, every augmented version of a training sample is almost always slightly
different from other versions, due to the randomness of the DA. This regime is the default of DAs
currently used in the literature.
2) Limited Randomness Regime (LRR): all augmented samples are kept in a pool, and are reused
during training. The number of times a sample is reused is determined by the percentage of random-
ness p, and the number of times a training sample is augmented and added to the pool is determined
by number of augmented variants k, for a model trained for e epochs, where p = k

e × 100. This
regime allows for control over the number of times a specific augmented sample has been seen by the
model.

Under each regime, we will evaluate models for the task of image classification, and will report: 1)
training and test classification accuracy, 2) training loss curves on original and augmented data during
training, 3) Approximate Invariance erroR (AIR) on training and test sets as defined below:

AIRgX =
1

s

s∑
i=1

1[f(Xi) 6= f(gXi)] (2)

where f is a supervised model (e.g, a neural network) trained to classify X , and 1[a 6= b] = 1 if
a 6= b and 0 otherwise. and 4) Augmentation Worth (AW) defined as:

AWgk =
Accgk −Accg0

ksgn(Acc
gk

−Accg0 )
(3)

where Accgk is the test classification accuracy, incorporating data augmentation introduced by g, k is
the number of augmented variants used during training1, and sgn is the sign function.

We report experiments on image and audio classification tasks. For images, we use ImageNet [18]
and CIFAR100 [17], datasets, with two different architectures, VGG [33] and ResNet [14]. As
for data augmentations, we study Mixup [12], Cutout [9], Cutmix [39], and classic augmentation
(flipping, rotation, color jitter) [17, 14]. For Audio, we use the DCASE2020 dataset [25], with
an Audio Resnet architecture [16], trained on spectrogram features, and for augmentations we use
Mixup, SpecAugment [26], and time-rolling on the audio spectrograms. In Section 6, we provide
some preliminary result using two toy datasets.

6 Preliminary Experiments

In this section, we use two toy datasets [27] to demonstrate how DA with a non-aligned IB will
affect models, and how can we identify a non-aligned IB using DA under LRR. To this end, we train
models2 on each dataset, while applying DAs with either an Aligned IB (DA-AIB) or a Non-Aligned
IB (DA-NAIB). For the DA with an Aligned IB, we add noise from a zero-mean Gaussian distribution
with a small std, with careful consideration that augmented samples won’t cross the boundary between
classes. For the DA with a Non-Aligned IB, we add noise to samples without considering the distance
between classes, intentionally forcing some augmented samples to cross the class boundary. We
expect that models trained with DA-NAIB perform significantly worse than models trained with DA-
AIB. The noise for DA-AIB is drawn fromN ([0, 0], [0.1, 0.1]) andN ([0, 0], [0.2, 0.4]) on circles and

1e.g, Accg2 shows the test accuracy of a model where each training sample has been augmented twice.
2A neural network with 3 fully-connected layers and ReLU non-linearity.
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(a) Ciscles Dataset.

(b) Moons Dataset.

Figure 3: Decision boundaries of models for Circles and Moons datasets. The colums from left to
right: 1) Non-Aligned DA under LRR, 2) Non-Alighted DA under MRR, 3) Aligned DA under LRR,
4) Alighted DA under MRR

moons datasets, respectively. For DA-NAIB, U([−1,−1], [1, 1]) was used in both datasets. N (µ, σ)
and U(a, b) denote multivariate normal and uniform distributions, respectively.

To test the effect of randomness, we reduce the amount of randomness by augmenting the 6 training
samples once, and then train a model on these 12 original and augmented examples. In this setting,
each training example has been augmented only once, but has been seen by the model 100 times
during training (our reference is training with 100 epochs under MRR, as we will explain next).
Similarly, the model has seen the original training data 100 times. We will refer to this setting as DA
under LRR. As a control experiment, we also apply DA on the fly, that is, augment the training data
with the probability of 0.5 in each update. We refer to this as DA under MRR. Each model is trained
for 100 epochs on a training set of 64 samples, and is then evaluated on a test set of 1500 unseen
samples. Each experiment is repeated 5 times, and the mean and standard deviation of classification
accuracies, as well as the mean Augmentation Worths are reported in Table 1.

Preliminary Results: Looking at the results, we observe that under the MRR, models trained
using DA with the intentionally non-aligned IBs, achieve similar results to those trained using
DA with an aligned IB. However, under the LRR, models trained using DA with non-aligned IB
perform significantly worse than those trained with an aligned-IB DA. We can also observe that the
Augmentation Worth measure can reflect the value of the IB to the task at hand, showing a larger
negative worth for the non-aligned DA. These results suggest that in order to determine whether an
IB is aligned with the task and data, limiting the amount of stochasticity is crucial, and it can help us
to better evaluate the IBs in DA and their effect on performance. In Figure 3 we additionally provide
visualisation of the original training data, as well as the decision boundary3 in models trained on our
toy datasets. In these figures, we can observe that the decision boundaries of models trained with
DA-NAIB under LRR (1st column) are different from MRR (2nd column); and samples of one class
are much closer to the boundary in the model trained with DA-NAIB under LRR.

Acknowledgments and Disclosure of Funding

The LIT AI Lab is financed by the Federal State of Upper Austria. This material is based upon work
supported by the Google Cloud Research Credits program with the award GCP19980904. We thank
Werner Zellinger from the Software Competence Center Hagenberg GmbH (SCCH), Rosanne Liu,
and the ML Collective for the valuable discussions and their feedback on this work.
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Table 1: Classification Accuracy of models trained with different DAs on the toy datasets. No-
augmentation model achieves 93.51±5.83 and 92.02±5.01 on circles & moons datasets, respectively.
N.A.: Non-Aligned IB. A.: Aligned IB.

LRR MRR

N.A. A. N.A. A.
ACC

Circles 76.97± 9.66 94.39± 6.48 81.13± 7.77 93.59± 3.32
Moons 77.74± 11.21 94.64± 1.69 87.77± 4.97 93.34± 1.78

AIR

Circles 0.37± 0.05 0.08± 0.03 0.40± 0.06 0.08± 0.02
Moons 0.27± 0.03 0.15± 0.04 0.25± 0.07 0.17± 0.02

AWg1 AWg100

Circles −16.54 0.88 −1238.03 0.00
Moons −14.28 2.62 −425.53 0.01
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