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Abstract

Deep generative models have seen a dramatic improvement in recent years, due to
the use of alternative losses based on perceptual assessment of generated samples.
This improvement has not yet been applied to the model class of probabilistic
circuits (PCs), presumably due to significant technical challenges concerning
differentiable sampling, which is a key requirement for optimizing perceptual
losses. This is unfortunate, since PCs allow a much wider range of probabilistic
inference routines than main-stream generative models, such as exact and efficient
marginalization and conditioning. Motivated by the success of loss reframing in
deep generative models, we incorporate perceptual metrics into the PC learning
objective. To this aim, we introduce a differentiable sampling procedure for
PCs, where the central challenge is the non-differentiability of sampling from the
categorical distribution over latent PC variables. We take advantage of the Gumbel-
Softmax trick and develop a novel inference pass to smoothly interpolate child
samples as a strategy to circumvent non-differentiability of sum node sampling.
Our hypothesis is that perceptual losses, unlocked by our novel differentiable
sampling procedure, will elevate the generative power of PCs and improve their
sample quality to be on par with neural counterparts like probabilistic auto-encoders
and generative adversarial networks.

1 Introduction

The central task of approximating data-generating distributions by means of probabilistic models
has experienced impressive improvements with the advent of deep learning. However, when con-
sidering the in-depth novelties that underlie the corresponding advancements, it seems that several
improvements are independent of the neural network and its parameters. The neural architecture of
encoders and decoders involved in state-of-the-art deep generative models is predominantly shared
among methods. Instead, it could be argued that major achievements were an immediate result of
iterative stages of reframing the optimization and the particular employed objectives.

For instance, for natural images, the initial sampled generation on the basis of denoising auto-
encoders [2] (DAE), or variational inference in neural networks [11, 20] (VAE), was rapidly improved
upon with the inclusion of a min-max objective that learns to separate real from fake data in a
discriminator of a generative adversarial network (GAN) [10]. The latter approach, promoted to
emphasize a “perceptual” measure over pixel values, has then been brought back into a hybrid
VAEGAN model [24]. Subsequently, several concurrent realizations of adversarial training have
argued that an encoder-decoder is sufficient to formulate a min-max adversarial objective [17, 41],
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without the presence of an extra discriminator. The loop has seemingly been closed with the proposal
of the perceptual auto-encoder [45], linking advancements back to the original neural starting point.
Orthogonal developments have simultaneously improved generation quality through the addition of
autoregressive sampling steps [4, 13] and losses motivated from a perspective of optimal transport
with the incorporation of Wasserstein distances [1, 39].

Motivated by this evolution of deep generative models, we posit that the prevalence of (deep) neural
networks is not primarily due to the nature of their neural architectural design and computational
operations, but rather from objectives that directly relate samples from the approximated distribution
to ground-truth data instances, in an attempt to introduce perceptual metrics into training. To date,
the latter practice is absent from tractable probabilistic model alternatives, such as the family of
probabilistic circuits (PCs) [5, 6, 16, 22, 33, 42], which focus their training efforts on maximum
likelihood estimation (MLE). Despite these models having a crucial advantage of providing general
and computationally efficient inference, a large scale demonstration of their generative modeling
capabilities comparable to their neural network counterparts still remains open. Our paper’s central
hypothesis is that the perceived gap to neural networks can be bridged and probabilistic circuits
provide an equally adequate alternative, if their objective is posed from an analogous perspective.
That is, we introduce to PCs a formulation of objectives over samples from the approximated
distribution and ground-truth instances.

To gather experimental evidence in support of our hypothesis, we propose to introduce differen-
tiable sampling into PCs. This provides the currently missing component required for flexible loss
formulation to include similarity measures between samples and data. Therefore, we present a
novel differentiable sampling procedure for PCs, which provides continuous approximations to the
non-differentiable operations in the standard sampling procedure. Finally, an evaluation of PCs on
methods such as probabilistic auto-encoding [20], adversarial training [10], and maximum mean
discrepancy optimization [12] will be enabled.

2 Related Work

Probabilistic circuits (PCs) are a set of expressive probabilistic models that provide exact and tractable
inference for a wide range of probabilistic queries. Well-known representatives of PCs are arithmetic
circuits [5, 6], cutset networks [33], probabilistic sentential decision diagrams [22], and sum-product
networks (SPNs) [16]. PCs are graphical models which connect a set of random variables (RVs),
modeled in leaf nodes, by repeatedly and hierarchically assuming independence between RVs (product
node) and building convex mixtures over these local independencies (sum node). For our purpose, we
concentrate on SPNs, although the findings of this work will be equally applicable to every member
of PCs. SPNs constrain their graphs to be smooth, i.e. all children of a sum node must have equal
scope, in other words, the distribution they encode should be defined over the same set of RVs.
Moreover, SPNs are decomposable, i.e. all children of a product node must have pairwise disjoint
scope. These constraints allow for efficient marginalization and conditioning routines, providing great
representational power and efficiency for probabilistic queries. Recent work on the computational
efficiency [34, 36], and specialized SPN structures such as EinsumNetworks [30] and LibSPN [32],
leverage modern GPU architectures to further scale SPN model complexity and reduce the gap to
deep neural networks in terms of model capacity.

SPN parameters, i.e. sum node weights and leaf node distribution parameters, are optimized by
means of maximum likelihood estimation. To date, SPNs cannot make use of flexible formulations
of optimization objectives that include perceptual loss terms involving the generated samples. In
contrast, due to the continuous nature of the way deep neural components are arranged, the generation
of samples in deep probabilistic models admits direct formulation of objectives L (x,x∗) in the input
domain, where x is a data instance and x∗ is a sample generated by the model.

2.1 Flexible Loss Formulations in Neural Networks

As an early example, the generalization of denoising auto-encoders in Bengio et al. [2] has formulated
the denoising procedure from a probabilistic perspective. That is, given a data instance x, a noisy sam-
ple x̂ ∼ C(x̂ |x) is generated from a corruption process C and the expected value of − logPθ(x | x̂),
a reconstruction loss, is then minimized. A variational inference approach to auto-encoding has been
suggested in Kingma and Welling [20]. Here, a variational approximation qθ(z |x), encoded through
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the parameters of a neural network, serves as the approximation to the true posterior p(z |x). A lower
bound on the data likelihood p(x), consisting of a reconstruction error between the data instance and
a reconstruction x∗ ∼ p(x | z) from the decoder, and a negative Kullback-Leibler divergence term
that represents the distance between the variational posterior and a typically isotropic Gaussian prior
p(z) = N (0, 1), are optimized jointly with the help of a reparametrization trick.

A different strategy has been proposed by Goodfellow et al. [10] who construct a min-max game
objective. The introduced model consists of two components i.e. a generator G, generating samples,
and a discriminator D, that discerns whether an input is generated by G (fake) or whether it is a
true data instance (real) by incorporating a perceptual loss on the quality of samples generated by G.
The objectives are formulated such that D maximizes its accuracy, while G is pushed to generate
samples that fool D, thus, reducing its accuracy. Since the sample generation by G and the fake-real
discrimination by D are differentiable, the two components can be trained in an end-to-end fashion,
allowing for direct optimization of perceived sample quality.

Therefore, a crucial component seems to be differentiability in sample generation, which is still
missing from PC formulations. In this work, we address this challenge and thus bring a broader set of
optimization objectives to PCs, similar to the one found in deep neural models. In Section 3, we first
summarize the parts of the standard sampling in PCs that break differentiability and then continue to
propose a novel procedure that permits gradient flow from model samples to parameters, therefore,
making PCs amenable to the aforementioned flexible loss formulations.

2.2 Complementary Advances

Whereas the previous section has highlighted the role of differentiability in sampling and the conse-
quent possibilities of flexible loss formulations as a key element of sample quality improvements,
there naturally exist other avenues that have lead to further advances in recent years. For example,
sophisticated data-augmentation techniques have been proposed and are commonly employed in
practice. To name a few, geometric transformations, color space augmentations, image mixing,
random erasing, feature space augmentation, all lead to respective model performance boosts, as
summarized in several timely surveys [8, 35, 43]. While interesting, these are fully complementary
to perceptual loss formulations and the concept under investigation in this work. Therefore, the
additional inclusion of these auxiliary efforts should be inspected in separate future work.

Another line of recent concurrent work are diffusion models [15, 21, 37]. The latter sample by
reversing a gradual noising process and, regarding sample quality, have been shown to be on par
with GANs [7]. Whereas diffusion models are conceptually different, we argue that they can also be
perceived as a fundamental way of re-framing the optimization objective from a perceptual point of
view, i.e. learning to produce a slightly less noisy xt−1 from xt until reaching a final sample x0.

3 Method

To gain comparable benefits from employing perceptual loss quantities as deep neural models do, we
hypothesize that permitting gradient flow during sample generation w.r.t. the model’s parameters can
elevate PCs to similar data generation quality as deep neural models.

3.1 Sampling in Sum-Product Networks

Sampling in SPNs is performed in a top-down fashion by starting at the root node, descending into
either all of its children, in the case of a product node, or one of its children, in the case of a sum node.
When a leaf node is reached, the distribution modeled by that leaf node is sampled. The particular
sampling procedures for sum and product nodes are defined in the following.

Product nodes in SPNs are decomposable and, thus, have children with pairwise non-overlapping
scopes. Therefore, the sampling procedure for a product node P simply requires to sample from all
of its children ch(P), i.e. x∗ = {x ∼ N | ∀N ∈ ch(P)}. Figure 1a depicts the sampling procedure
for a sum node S sampling procedure as a computation graph. Interpreting the sum node weights
wS = {wS,N |N ∈ ch(S)} as categorical probabilities, we first sample from a categorical distribution
i ∼ Cat (wS), where i is used as an index to obtain the sampled sum node child N∗

i = ch(S) [i] and
we finally obtain the actual sample x∗ ∼ N∗

i .
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(a)

wS

i ∼ Cat (wS)

N∗
i = ch(S) [i]

x∗ ∼ N∗
i

Forward pass

Backward pass
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Non-diff. Operation

Diff. Operation

(b)

wS g ∼ Gumbel (0, 1)

u = log (wS) + g

y = softmax
(
u
τ

) x = (x1, . . . ,xk) ,
xi ∼ Ni,∀Ni ∈ ch(S)

x∗ = yT · x

∂u
∂wS

∂y
∂u

∂x∗

∂y

Figure 1: Computation graphs for the (a) standard and the (b) differentiable sampling procedure in an
SPN sum node S. Gray nodes indicate non-differentiable operations which break the gradient flow on
the path wS → x∗. Using the Gumbel-Softmax Trick combined with smooth child interpolation, we
are able to construct a computation path wS → x∗, which consists of only smooth functions, allowing
gradient computation ∂x∗/∂wS between the generated sample x∗ and the sum node parameters wS

using the chain-rule.

The sum node sampling steps break differentiability in two points as highlighted in Figure 1a. The
first operation is the drawing from a categorical distribution, which is a not differentiable due to its
discrete nature. The second issue arises when obtaining the sampled child node N∗ by indexing the
set of all children ch(S) which is a discrete operation. Indexing prohibits gradients w.r.t. the index
itself, thus, breaking differentiability. In the following, we explain how to tackle these challenges and
formulate a differentiable sampling procedure for SPNs.

3.2 Differentiable Sampling in Sum-Product Networks

To leverage differentiability during sampling in SPNs, we propose a novel sampling procedure that
differs from the standard sampling procedure in two ways. We first replace the discrete categorical
sampling in sum nodes by a continuous approximation, making use of the well-known Gumbel-
Softmax Trick [18, 28]. Then, we perform smooth interpolation of sum node children to overcome
the discretization introduced by indexing a single child.

Gumbel-Softmax Trick Let z be a categorical variable with probabilities π1, . . . , πk, the Gumbel-
Max trick allows us to draw samples z from a categorical distribution z = argmaxi {log (πi) + gi} ,
with gumbel distributed noise gi ∼ Gumbel (0, 1) . To relax the discretization introduced by the
argmax operation, Jang et al. [18] have proposed to use the softmax function as a continuous,
differentiable approximation to argmax, leading to a k-dimensional sample vector y in the simplex
∆k−1 where y = softmax((π + g)/τ). The temperature τ controls the approximation precision. As
τ goes towards zero, the Gumbel-Softmax Distribution [18] converges to the categorical distribution
with probabilities πi. For τ > 0, the Gumbel-Softmax distribution is smooth and has a well-defined
gradient ∂yi/∂πi with respect to its parameters πi.

Smooth Child Interpolation For the sake of simplicity, let us first explore the issue of discretization
induced by child node indexing for the case when τ → 0. After applying the Gumbel-Softmax
Trick, sampling from a sum node S results in a one-hot encoded vector y with yi = 1 at exactly one
position (the sampled child node index) and yj = 0 for all j ̸= i. Let’s assume a scenario in which we
have already sampled from all children of S, i.e. we have a vector x∗ = (x∗

1 ∼ N1, . . . ,x
∗
k ∼ Nk)

T .
In the conventional non-differentiable perspective, we are now required to index this vector with
the sampled index i. Due to the one-hot encoding of the vector y, we can perform the dot-product
between x∗ and y to obtain an interpolation between all samples (x∗

1, . . . ,x
∗
k)

T · y = x∗
i . In the

general case of τ > 0, then, the dot product will result in a mixture over all possible child samples.
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Each child sample contributes to the final sample according to the sampled mixture weight yi. The
computation graph of the differentiable sampling procedure is shown in Figure 1b. Alternatively,
we can also use the Straight-Through Gumbel Estimator [18] by discretizing y with argmax in the
forward pass, but use the continuous approximation ∇πz ≈ ∇πy in the backward pass.

While this sampling procedure is differentiable, it is not identical to the sampling from the correspond-
ing categorical distribution for τ > 0. This leads to a trade-off during parameter learning, where small
τ results in almost one-hot encoded samples and gradients with high variance, while large τ leads to
smooth samples with low gradient variance. To allow for stable training, the temperature τ can either
be annealed or learned as a parameter, which can be interpreted as entropy regularization [31, 38]. In
this case, the Gumbel-Softmax distribution adaptively adjusts the “confidence” of the samples during
the training process [18].

Moreover, by creating these smooth top-down evaluations through the network graph using the
Gumbel-Softmax Trick, while out of scope for the investigation of this work, it is now possible to
further consider variance reduction techniques to deal with discrete distributions in differentiable
programs, such as REBAR [40], wake-sleep algorithms [14], or REINFORCE [44].

4 Experimental Protocol

Our experimental protocol is devised to demonstrate the effectiveness of our contributions, namely,
the introduced differentiable sampling for PCs to enable flexible objectives. Our main hypothesis
is that PCs equipped with the latter can be on par with deep neural models like GANs and VAEs
in sample generation. For this purpose, we leverage the implementation of PCs by Peharz et al.
[30], where we implement our proposed method, Section 3.1, to take advantage of the flexible loss
formulations as seen in neural networks and investigate their impact in PCs. Given that this is
uncharted territory for PCs, as previous works did not prioritize perceived image sample quality, our
focus is to investigate SPNs with differentiable sampling in the following three concrete settings.

4.1 Flexible Loss Experiments

1. Adversarial Training: We adopt the min-max optimization objective of GANs [10]:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] .

In our case, the generator G is an SPN SG and the second term of the objective becomes the
expectation over samples drawn from SG: Ex∼SG(x) [log (1−D(x))]. The discriminator D can be
either: 1) The generator SPN SG itself, similar in spirit to adversarial training with introspection [17],
2) a separate, discriminative, SPN SD [9], 3) another arbitrary model, e.g. a neural network. We then
compare the sample quality with the original GAN, where G and D are modeled by a neural network.
For a fair comparison, we will also use the discriminative SPN SD with the neural generator G.

2. Maximum Mean Discrepancy: We train SPNs by using and minimizing the Maximum Mean
Discrepancy [12] distance:

MMD2(x,y) =
1(
n
2

) ∑
i ̸=j

k(xi,xj)−
2(
n
2

) ∑
i ̸=j

k(xi,yj) +
1(
n
2

) ∑
i ̸=j

k(yi,yj) ,

as proposed in MMD-GANs [26]. The core idea is to employ the kernel two-sample test, denoted by
k in above equation, instead of a discriminator with the goal of minimizing the distance between the
target and the estimated distributions. In our evaluation, we contrast against MMD-GAN [26] and
employ adversarially learned kernels for both, the MMD-GAN and the SPN.

3. Probabilistic Auto-Encoding: We extend SPNs by explicitly modeling the distribution of the
latent space, similar to VAEs. That is, we learn an SPN S(x, z) over the joint of the input x and
some latent space variables z via auto-encoding. Given a data point xi ∼ pdata(x), we compute its
latent representation with the most probable explanation zi = argmaxi S(z |xi). Then, we generate
its reconstruction by sampling x̂i ∼ S(x | zi). We compare the results with a VAE [20] that has a
Gaussian prior. For a fair comparison, we also model the SPN latent variables z as Gaussians.
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4.2 Fair Experiment and Evaluation Protocol

We analyze the above three loss formulations and their respective comparison with neural networks
on four commonly investigated image datasets: MNIST [25], CIFAR-10 [23], SVHN [29], and
CelebA [27]. For each dataset we will use their default data splits for train, test, and validation
sets and employ preprocessing, i.e. ensuring zero mean and unit variance for each feature across
the dataset. Furthermore, for each proposed experiment we will also compare with a baseline SPN,
optimized purely using maximum likelihood. As SPNs and deep neural networks deviate in their
model structure, we practice particular caution to warrant a fair comparison that provides conclusive
evidence with respect to our postulated hypothesis. For each experiment, we will perform five
randomly seeded runs to measure statistical deviations. Specifically:

Optimization: We use Adam [19] as the optimization algorithm in all models. Since the aforemen-
tioned loss objectives are novel territory for SPNs, we conduct a grid-search over a discrete set of
learning rates and the stochasticity induced by mini-batch size using a separate validation set. The
same process is conducted for the neural counterparts. A set of hyper-parameters is then selected
individually for each model to assure an adequate operating point.

Metrics: For evaluation purposes we primarily employ the predominant Fréchet inception distance
(FID). However, this metric is known to suffer from minor perturbation and resolution changes [3].
Therefore, we also analyze the generative power of each model by training a separate classifier on the
corresponding generations, and we assess its classification performance on the original test sets. For
the auto-encoding setting, we will further report the reconstruction losses.

Model Capacity: To keep the comparison between original models and the SPN variants fair, we
employ the same amount of parameters for each model in direct comparisons.

Data Efficiency and Convergence: Since deep neural networks and PCs have fundamentally
different structures, they may have different data efficiency and convergence rate. For this purpose,
we evaluate the aforementioned losses and metrics under the lens of different amounts of training
instances available for optimization. In addition, to further underline the fairness w.r.t. the arguments
in the previous points on optimization and metrics, we also test all models at different points over the
course of training, in order to assess generation quality at potentially different convergence speeds.

Ablation: Since the Gumbel-Softmax Trick exposes an additional hyper-parameter, i.e. the tem-
perature τ , we will perform an ablation study between constant, annealed, and interactively learned
temperature values. We perform this study on CIFAR-10 for each of the investigations in Section 4
with a fixed learning rate and mini-batch size, to keep the number of experiments practical.
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