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Abstract

We propose a novel deep learning framework that focuses on decomposing the
motion or the flow of the pixels from the background for an improved and longer
prediction of video sequences. We propose to generate multi-time step pixel level
prediction using a framework that is trained to learn the temporal and spatial depen-
dencies encoded in video data separately. The proposed framework called VANet
would be able to extend the static video predictions where the camera is stationary,
to the dynamic case where the camera is mounted on a moving platform. This
framework decomposes the flow of the image sequences into velocity and accelera-
tion maps and learns the temporal transformations using a convolutional LSTM
network. The content of the static background is filtered through a convolutional
neural network and then combined with the masks generated from the temporal
transformation network to generate the final prediction.

1 Introduction and Related Works

Prediction is an integral part of our day to day planning and decision making process and it often
requires us to understand the complex interactions between the dynamics of various objects in the
environment. This is why it is often considered as a fundamental component of intelligence Bubic,
Cramon, and Schubotz (2010). Video prediction often decodes much useful information about the
surroundings in a format which is rich in information and can be exploited by learning algorithms.
However, the nature of the complex interactions between the dynamics of the different objects in a
scene, makes long term video prediction a daunting learning problem Finn, Goodfellow, and Levine
(2016), Finn and Levine (2017), Mathieu, Couprie, and LeCun (2015), Villegas et al. (2017), Gao
et al. (2019), Villegas et al. (2019). Based on the state of the art literature, multi-time step video
prediction can be broadly divided into two categories: (i) Video prediction in a fully observable static
background where the camera remains still during the course of the recording Finn and Levine (2017),
Mathieu, Couprie, and LeCun (2015), Villegas et al. (2017); and (ii) Video prediction in dynamic
background where the camera is mounted on a moving platform (such as car or a mobile robot).
The latter case is often referred to as prediction in partially observable scenario in the literature Gao
et al. (2019), Villegas et al. (2019). The notion of partial observability comes from the continuous
occlusion of the background from the motion of the camera.
In the context of automation, planning of different manipulation tasks is often associated with video
prediction in a fully observable environment where the camera is fixed and stationary. However, in
the case of motion planning problems of autonomous cars and mobile robots, we mostly deal with a
partially observable environment as the camera keeps moving forward. Combining video prediction
with model based policy gradient algorithms Kaiser et al. (2020) or planning algorithms Hafner et al.
(2019), improves sample efficiency of reinforcement learning algorithms by reducing the required
number of episodic interactions with the environment compared to other model free methods without
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compromising performance. Moreover, Ebert et al. (2018), Dasari et al. (2020) have recently shown
us how visual predictions can aid the robot control problems, especially in unstructured environments.
In the last decade the major focus of understanding spatio-temporal dynamics of video prediction
was mostly confined to the case of fully observable environments with static cameras Srivastava,
Mansimov, and Salakhudinov (2015), Oh et al. (2015), Vondrick, Pirsiavash, and Torralba (2015),
Finn, Goodfellow, and Levine (2016), Mathieu, Couprie, and LeCun (2015), Villegas et al. (2017), Xu,
Ni, and Yang (2018), Wichers et al. (2018). Most of these frameworks exploit some form of optical
flow and content decomposition paradigm to generate pixel level predictions. Many times these
predictions were coupled with an adversarial training in order to generate realistic images. However,
with the availability of high compute power, there is a recent trend in generating high fidelity video
predictions with various generative architectures such as Generative Adversarial Networks (GAN)
and Variational Autoencoders (VAE) Liang et al. (2017), Denton and Fergus (2018), Babaeizadeh et
al. (2018), Lee et al. (2018), Castrejon, Ballas, and Courville (2019), Gao et al. (2019), Villegas et al.
(2019).
Few of these recent works, Gao et al. (2019), Villegas et al. (2019) tried to address the partial
observability problem in dynamic scene prediction with the ‘hallucination’ powers of the generative
(GAN and VAE) models. While these frameworks seem to generate realistic predictions for the
moving camera problem, their accuracy comes at the cost of high on-board compute capabilities, a
luxury most robotics engineer cannot afford for a small or medium scale robot.
Instead of using stochastic frameworks, We focus on addressing this problem by understanding the
physics of the motion in two different inertial frames: one associated with the moving camera and
the other one associated with the dynamic objects in the scene. Our framework is designed with the
simple idea of understanding the relative velocity of the object as it appears in the inertial frame
associated with the camera. For a motion planning problem, the realistic approximation of the scene
in the background does not play any significant role. However, the performance of the motion planner
or the policy generator would largely depend upon how accurately we can approximate the relative
motion of the objects in the scene with respect to the camera. The objects would appear to move faster
or slower than their original velocities in the image frames as the velocity of the camera influences
the relative velocities of the objects. This observation led to the idea of decomposing the flow of
the pixels into two different components of velocity and acceleration. Previous works Villegas et al.
(2017) on decomposition of video sequences into motion and content, stopped at understanding the
velocity maps or first order pixel difference maps of two consecutive frames. Those frameworks work
well for fully observable scenarios where the camera is stationary. However, when the recording agent
itself is dynamic, we need to decompose the motion further into the second order pixel difference
maps that we refer as acceleration maps along with the velocity maps. Deterministic models often
suffer from the problem of collective averaging of predicted pixels values which often result in blurry
image frames compared to their stochastic counterparts. However, unlike VAEs deterministic models
do not require large computational resources which makes them suitable for small scale robotic
applications and this is why we propose to study the comparative performance of the proposed second
order deterministic visual prediction model with stochastic frameworks such as SVAP Lee et al.
(2018) and SVG Denton and Fergus (2018)
In this paper we propose to conduct a fairly extensive empirical study on the performance of our
generalised physics based deterministic prediction framework and compare it to the state of the art
generative architectures in the context of a generalised problem of video prediction in a partially
observable environment. We also propose a new cost function that we believe will help the deep
frameworks learn to reconstruct the velocity and acceleration maps associated with each video frame.

2 Our Approach

For a generalised set up where the camera is mounted on a dynamic platform moving on a smooth
trajectory, the relative velocity vector of any object appearing on the camera frame keeps getting
modified. We intend to capture the dynamics of this changing relative velocity vector with a first order
pixel difference or velocity map and a second order pixel difference map that we call acceleration
map. This is why we need 3 consecutive image frames (xt,xt−1,xt−2) at timestep t, t− 1 and t− 2
to make prediction of the future frame xt+1 at timestep t+ 1, where xt ∈ Rw×h×c represents the
image frame at time t with dimension w × h × c. Due to the physics based design of our framework
our network is highly interpretable. Our framework can be thought of as the next generation and
more improved version of the Motion and Content network (MCNet) proposed by Villegas et al.
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Figure 1: Architecture of VANet while being trained on the KITTI raw dataset. The network learns
the temporal dependencies from the velocity and acceleration encoders which takes the first and
second order pixel difference maps as inputs, respectively. The content encoder takes the last or nth
frame as input to encode the spatial information. Content convolution network combines the spatial
encoding with the motion features. Similarly, the residues from the content, velocity and acceleration
encoders are fused together in the residue convolution network. Finally, the decoder generates the
predicted future frame.

(2017). While MCNet pioneered the idea of disentangling first order pixel difference map from
images sequences with a motion encoder for unsupervised video prediction, we further generalised
it to incorporate the complex interactions between the dynamics of the camera and object inertial
frames. The entire algorithm which we refer to as the Velocity Acceleration Network (VANet) as
shown in figure 1, can be decomposed into the following components:

• Velocity Encoder: The velocity encoder (fvel), parameterised with θvel, is designed to
capture the temporal dependencies embedded in the velocity map of two consecutive image
frames, xt and xt−1 at time t and t− 1, respectively. This network takes the velocity map
vt = (xt − xt−1) ∈ Rw×h×c at time t as input and maps them into two tensors: velocity
feature encoding vent ∈ Rw

′
×h

′
×c

′

and the memory cell state cvelt ∈ Rw
′
×h

′
×c

′

at time t
as:

(vent , c
vel
t ) = fvel(vt,v

en
t−1, c

vel
t−1; θ

vel) (1)
The memory cell state cvelt captures the temporal structure embedded in the velocity maps of
v1:t. fvel is designed with convolutional LSTM Shi et al. (2015) networks and, in essence,
embeds the velocity component of the pixel space into a low dimensional spatio-temporal
feature space.

• Acceleration Encoder: The acceleration encoder (facc) parameterised with θacc is de-
signed in the same image as of the velocity encoder with only difference of capturing
the temporal dependencies embedded in the acceleration map of two consecutive velocity
maps, vt and vt−1 at time t and t − 1 respectively. This network takes acceleration map
at = vt−vt−1 ∈ Rw×h×c as input and generates two tensors: acceleration feature encoding
aent ∈ Rw

′
×h

′
×c

′

and the memory cell state cacct ∈ Rw
′
×h

′
×c

′

at time t as follows:
(aent , c

acc
t ) = facc(at,a

en
t−1, c

acc
t−1; θ

acc) (2)
The memory cell state cacct captures the temporal structure embedded in the acceleration
maps of a1:t. This encoder is also designed with convolutional LSTM networks and maps
the acceleration component of the pixel space into a low dimensional spatio-temporal feature
space.
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• Content Encoder: The content encoder (f con) parameterised with θcon is designed to en-
capsulate the spatial information embedded in the latest image frame xt with a convolutional
neural network. The idea here is to map the high dimensional image frames xt ∈ Rw×h×c

into a low dimensional spatial feature embedding xent ∈ Rw
′
×h

′
×c

′

. Mathematically, it can
be represented as:

xent = f con(xt; θ
con) (3)

• Content Convolution Network: This is the part where we start combining the spatial
encoding xent coming from the content encoder network with the motion encoding of vent and
aent . We first combine velocity and acceleration encoding, [vent ,a

en
t ]∈ Rw

′
×h

′
×2c

′

, through
convolution operations to create the final relative velocity encoding venrelt ∈ Rw

′
×h

′
×c

′

as:

venrelt = fmotion([vent ,a
en
t ]; θmotion) (4)

We then combine the relative velocity encoding venretl with the spatial feature encoding
tensor xent with layers of convolution operation and generate the spatio-temporal feature
embedding for the next time-step, x̂ent+1 ∈ Rw

′
×h

′
×c

′

given as

x̂ent+1 = f conv([xent ,v
en
relt ]; θ

conv) (5)

Here, fmotion and f conv are both designed using CNN having bottle-neck architecture
(Hinton and Salakhutdinov (2006)), that first projects tensor pairs [vent ,a

en
t ] and [xent ,v

en
relt

]
into a low dimensional feature space and then pull back to the original feature space of
w

′ × h′ × c′ .

• Residue Convolution Network: The idea of temporal transformation of the residues gen-
erated from the f con in order to compensate for the loss of information from mapping
the high dimensional image frames xt ∈ Rw×h×c to a low dimensional feature space
xent ∈ Rw

′
×h

′
×c

′

was first introduced in Villegas et al. (2017). We carry forward the same
idea of multi-scale motion-content residue network but with our modified relative residue
velocity encoding [v̌enrelt ]

i ∈ Rwi×hi×ci at layer i given as:

[v̌enrelt ]
i = fmotionres ([v̌ent , ǎ

en
t ]; θmotionres )i (6)

where, [v̌ent ]i and [ǎent ]i are the residue velocity and acceleration encoding from the ith

layer of fvel and facc, respectively. The relative residue velocity encoding [v̌enrelt ]
i is then

combined with the content residue [x̌ent ]i generated from the ith layer of f con as:

[rent+1]
i = f convres ([x̌ent , v̌

en
relt ]; θ

conv
res ) (7)

Like the content convolution network, fmotionres and f convres also uses the CNN bottle-neck
architecture to combine the tensor pair of [v̌ent , ǎ

en
t ] and [x̌ent , v̌

en
relt

].

• Decoder: Finally we up-pool the spatio-temporal feature embedding x̂ent+1 and combine it
with the residual encoding of [rent+1]

i in a layer wise manner to generate the final prediction
of x̃t+1. The decoder network gdec is responsible to map the reduced dimensional x̂ent+1 ∈
Rw

′
×h

′
×c

′

back into the high dimensional pixel level representation of x̃t+1 ∈ Rw×h×c

which is same as the original image frames.

x̃t+1 = gdec([x̂ent+1, r
en
t+1; θ

dec) (8)

Where, rent+1 is a list of all residual encoding from f convres from all its layers. the decoder,
gdec uses deconvolutional neural networks Zeiler, Taylor, and Fergus (2011) which basically
consists of multiple successive operations of deconvolution, rectification and unpooling.
The residual embeddings from f convres is combined via the connection between the Residual
Convolution Network and the decoder in a layer-wise manner. The final output layer is
passed through a tanh non-linearity.
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3 Inference and Training

3.1 Inference of multi-time step prediction:

In section 2 we discussed how to make prediction for immediate future frame xt+1 at time-step t with
image frames xt, xt−1 and xt−2 at timesteps {t, t − 1 and t − 2} and velocity maps vt and vt−1.
However, for multi-time step prediction, our network observes the velocity and acceleration maps for
last n frames as the difference between image frames xt and xt−1 and velocity maps vt and vt−1

where t ∈ {2, n} and we assume x1 is the first observed frame. From this history of past n frames the
velocity and acceleration encoders learns the relative pixel dynamics of the scene and then the final
frame xn is given as input to the Content Encoder. The network then transforms xn into x̃t+1 with
the learned dynamics features.For t ∈ [n+ 1, n+ T ] where T is the desired number of prediction
steps, VANet starts using its own prediction as input to generate the velocity and acceleration maps.

3.2 Training and Loss function:

Since, VANet shares many structural similarities with the architecture of MCNet in Mathieu, Couprie,
and LeCun (2015), we also divided our loss function L into 2 major sub-loss functions as:

L = αLimage + βLadv (9)

where, Limage and Ladv constitutes the image loss and loss from adversarial training respectively,
and α, β ∈ R+. We further subdivide Limage into two components: (i) reconstruction loss Lrecon
and (ii) the total gradient difference loss LTGDL given as:

Limage = Lrecon + LTGDL (10)

The reconstruction loss: Lrecon is the total Lp norm distance between the ground truth image
frame xn+i and predicted future frames x̃t+i for i ∈ {1, T} averaged over the entire dataset of
D = {xi1,..,n,n+1,...,n+T }Ni=1. p can be 1 or 2, and is given by:

Lrecon(xn+1:n+T , x̃n+1:n+T ) =

n+T∑
i=n+1

‖xn+i − x̃n+i‖p (11)

We introduce the total gradient difference lossLTGDL which is further divided into gradient difference
loss from the predicted image frames: LGDL and velocity gradient difference loss from the velocity
maps generated from the predicted image frames: LV GDL. This is expressed as:

LTGDL = LGDL + LV GDL (12)

LGDL(x, x̃) =
n+T∑
t=n+1

w,h∑
i,j

||xt,i,j − xt−1,i,j | − |x̃t,i,j − x̃t−1,i,j ||λ+

+||xt,i,j − xt,i−1,j | − |x̃t,i,j − x̃t,i−1,j ||λ + ||xt,i,j − xt,i,j−1| − |x̃t,i,j − x̃t,i,j−1||λ
(13)

LGDL in Eq. (12) is similar to the Lgdl loss in Villegas et al. (2017) in that it gives an average of the
gradient difference loss between the predicted frames and ground truth. However, unlike Villegas et al.
(2017), we also add the component of temporal difference loss: ||xt,i,j−xt−1,i,j |−|x̃t,i,j−x̃t−1,i,j ||λ
to the expression of LGDL in Eq. (13), so that the velocity encoder can learn the pixel dynamics
more efficiently. Here, λ can be chosen to be 1 or 2.

LV GDL(x, x̃) =
n+T∑
t=n+1

w,h∑
i,j

||vt,i,j − vt−1,i,j | − |ṽt,i,j − ṽt−1,i,j ||λ+

+||vt,i,j − vt,i−1,j | − |ṽt,i,j − ṽt,i−1,j ||λ + ||vt,i,j − vt,i,j−1| − |ṽt,i,j − ṽt,i,j−1||λ
(14)

The expression for velocity gradient difference loss LV GDL given in Eq. (14) is similar to that
of LGDL in Eq. (13) with the replacement of x and x̃ with the ground truth velocity maps v and
predicted velocity maps ṽ, respectively. The LV GDL loss is designed so that the acceleration encoder
can disentangle and approximate the motion of the pixel dynamics to the second order.
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Due to the averaging effect to the reconstruction loss Limage and the blurring effects introduced with
the convolution operations, we add an adversarial loss Ladv to our total loss L in Eq. (9). Similar to
Mathieu, Couprie, and LeCun (2015), Ladv is defined as:

Ladv = −logD([x1:n, G(x1:n)]) (15)
where, [x1:n] is the concatenation of all input images and G(x1:n) = [x̃n+1:n+T ] generates the
concatenation of all the predicted future images and [xn+1:n+T ] is the concatenation of all ground
truth images. D(.) is the output from the discriminator network which is trained with the loss function
as:

Ldec = logD([x1:n, [xn+1:n+T ])− log(1−D([x1:n, G(x1:n)])) (16)

4 Experimental Setup and Methodology

In order to test the proposed framework, we plan to test it at 3 different task objective following
similar empirical analysis done by Villegas et al. (2019). We plan to evaluate the performance of the
network with respect to the structural integrity of the predicted frames with respect to the ground
truth. We plan to conduct rigorous studies using five different metrics: Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity (SSIM), VGG Cosine Similarity, Fréchet Video Distance (FVD). We
also plan to conduct a comparative analysis of the relative computational load of VANet with respect
to other SOTA models such as SAVP Lee et al. (2018) and SVG Denton and Fergus (2018) and
MCNet Villegas et al. (2017). While SVAP and SVG are computationally heavy generative models,
MCNet is deterministic and shares a lot of similarity with the architecture if VANet.

1. Object Interaction We would like to evaluate our network on the BAIR robot push datset
given by Ebert et al. (2017) in order to evaluate its performance in different object interaction
tasks. This dataset represents the interaction between different objects and a manipulator.
We anticipate that due to the stochastic nature of the interaction between the objects and the
manipulator, our deterministic model might face some limitation in long term prediction
tasks. However, this type of detailed comparative analysis would help us establish a baseline
for the limitation of deterministic video prediction networks in comparison to their stochastic
neighbors like SAVP Lee et al. (2018) or SVG Villegas et al. (2019).

2. Structured Motion One of the well established structured motion prediction datasets is the
KTH Schuldt, Laptev, and Caputo (2004) human action dataset. Although this dataset is
recorded in a fully observable setting, tracking the complex human motion for long duration
is a daunting task. Thus, comparing the performance of VANet with SAVP, SVG and MCNet
will establish how our proposed framework performs in comparison to the state of the art
generative as well as deterministic methods. The analysis of the comparative performance
between VANet and MCNet would of particular interest here as it would help us understand
whether the proposed generalised approach toward decomposing motion into velocity and
acceleration maps provides any improvement or not.

3. Partial Observability Given the primary objective of the proposed VANet is to generate
predictions of object motion in a partially observable scenario, we plan to focus majority
of our testing and comparative analysis on this type of tasks. Right now, the only dataset
that provides the scope of analysing our network’s performance in a partially observable
scenario, is KITTI Geiger et al. (2013) dataset. Here, the video is recorded from a camera
fixed on the dashboard of a moving car. Thus, the background of the images keeps getting
updated and creates complex interactions between the moving objects on the streets and the
relative velocity of the camera.

4.1 Ablation Study

We also plan to conduct a thorough ablation study on our proposed framework by removing various
components from it. If we remove the acceleration encoder from the network we can analyse
whether that would affect the network’s overall performance in making long term predictions for
both fully observable and partially observable cases. Due to modular nature of our proposed loss
function we can further simplify the loss function by turning off the effect of LV GDL and LGDL
from propagating through the network. Similarly, we also plan to study the effect of information loss
from the convolution operations on the network by training VANet only on the reconstruction loss of
Ladv by removing the adversarial loss Ladv from L.
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