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Abstract

By representing semantics in latent spaces, Variational autoencoders (VAEs) have
been proven powerful in modelling and generating signals such as image and text,
even without supervision. However, previous studies suggest that in a learned
latent space, some low-density regions (aka. holes) exist, which could harm the
overall system performance. While existing studies focus on empirically mitigating
these latent holes, how they distribute and how they affect different components
of a VAE, are still unexplored. In addition, the hole issue in VAEs for language
processing is rarely addressed. In our work, by introducing a simple hole-detection
algorithm based on the neighbour consistency between VAE’s input, latent, and
output semantic spaces, we propose to deeply dive into these topics for the first
time. To empirically validate the effectiveness of our approach as well as to obtain
novel insights, a detailed experimental protocol including automatic evaluation and
human evaluation is designed.

1 Introduction

The Variational Auto-Encoder (VAE) [16, 23] is a powerful model to unsupervisedly learn a low-
dimensional manifold (aka. a latent space) from a non-trivial high-dimensional data manifold. It has
been proven useful in multiple downstream applications: the encoder of a VAE can facilitate multiple
tasks such as classification [31] and transfer learning [12], while the decoder holds promise in the
generation domain [8, 10].

Despite its success in processing image [13, 21], text [3, 10, 20, 19] and audio [25], past studies
report that a sampled latent variable might land in low-density regions (aka. holes) of the learned
latent space [24, 30]. Existing approaches concentrate on directly mitigating the hole problem in an
empirical fashion, and mainly focus on the image domain. [7] proposed to use the manifold-valued
latent variables to learn a latent space; [4] introduced the von Mises-Fisher (vMF) distribution to
replace the conventional Gaussian distribution; [14] proposed to use the Riemannian Brownian
motion prior rather than the simple Gaussian prior. In the text field, the existence of latent holes has
just been confirmed by [30] very recently, who additionally claimed the “holes problem” tends to
be more severe on text compared with image. They proposed to constrain the latent variable to an
orthogonal and no-holes filled probability simplex and manipulate the latent code within the simplex
for text style transfer.
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Figure 1: The framework of our methodology.

To summarise, all these studies simply attempt to alleviate holes by constructing a theoretically less-
hole space or replacing the prior. They failed to identify the locations of these holes, to investigate
how they respectively affect the trained encoder and decoder, or to reveal their (semantic) properties.
Also, the research on holes of VAEs for text is relatively neglected and is still at an initial stage.

In this work, we propose the first fine-grained framework to automatically detect low-density latent
regions of VAEs, with a focus on the natural language processing scenario. Our algorithm is based on
the consistency of neighbouring representation spaces for the inputs, outputs and latent variables,
which is agnostic to the VAEs tested and has outstanding interpretability. Moreover, our method can
separately analyses the holes’ influence on the performance of the encoder and decoder: we believe
this direction has never been visited.

To validate the effectiveness of our algorithm and to get more insights on the holes’ properties,
we design three experiments with extensive setups. Firstly, we will start with finding out the best
way to represent VAEs’ input and output semantics spaces, so as to guarantee the accuracy of our
method (§ 4.2). Secondly, we will detect holes in the latent space and examine how they affect
encoders and decoders respectively, through automatic and human evaluations (§ 4.3). Thirdly,
we will further investigate whether the identified holes really encode nothing at all as past studies
hypothesised [24, 30], or they actually capture information which is yet to be explored (§ 4.4).

2 Background: Variational Autoencoder

A variational autoencoder is a generative model which defines a joint distribution over the observations
x and the latent variables z, i.e., p(x, z) = p(x|z)p(z). Given a dataset X = {xi}Ni=1 with N i.i.d.
datapoint, we need to optimise the marginal likelihood 1

N p(X) = 1
N

∑N
i

∫
p(xi|zi)p(zi)dz over

the entire training set. However, this marginal likelihood is intractable. The common solution for this
issue is to maximise the Evidence Lower Bound (ELBO) using the variational inference for every
observation x:

L(θ,φ;x) = Eqφ(z|x)[log pθ(x|z)]−DKL (qφ(z|x)‖p(z)) , (1)

where qφ(z|x) is a variational posterior to approximate the true posterior p(z|x). Both the variational
posterior qφ(z|x) (aka. encoder) and the conditional distribution pθ(x|z) (aka. decoder) are set up
using two neural networks with parameters φ and θ, respectively. Normally, the first term in Eq. (1)
is the expected data reconstruction loss demonstrating how well the model can reconstruct data given
a latent variable. The second term is the KL-divergence of the approximate variational posterior from
the prior, i.e., a regularisation forcing the learned posterior to be as close to the prior as possible.

3 Methodology

For each of n samples in a test set, our framework aims to detect how likely it is to link with a latent
hole, and whether it has influence on the performance of the encoder, the decoder or both.
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As sketched in Fig. 1, the main pipeline begins with the testing inputs and outputs of a pre-trained
VAE-based language model, where the representation matrices are denoted as X and X′, respectively
(they all have n rows which correspond to n sentences with d dimensions; see § 4.2 for implementation
choices). When researchers build VAE-based language models, one commonly adopted hypothesis is
that the sentence encoding of inputs, outputs, and latent variables are all semantically smooth [3, 34,
8, 27, 18]. This belief has been evidenced by the popular semantic transferring experiments from
sentence x1 ∈ X to x2 ∈ X with linear interpolation between the corresponding z1 ∈ Z and z2 ∈ Z,
where Z denotes the latent variables matrix which row-wise corresponds to X and X′ (i.e., with n
rows) and has a dimension of v. Therefore, suppose a perfect VAE which is hole-free, then for each
sample, its neighbouring structures in the input, latent, and output spaces should be consistent, which
can be formalise as

sort(Di
n×n) = sort(Dl

n×n) = sort(Do
n×n), (2)

where Di
n×n, Dl

n×n and Do
n×n are the adjacency matrices showing observed vector samples’ pair-

wise distances, with rows and columns aligned. The sort(·) function replaces elements in its input
into their row-wise (i.e., sentence-wise in our scenario) rankings the corresponding matrix.

Simple though it is, Eq. (2) can be utilised to evaluate the semantics inconsistency of a VAE’s encoder
and decoder:

ME
n×n = sort(Di)− sort(Dl),MD

n×n = sort(Do)− sort(Dl) . (3)

It is worth noting that in Eq. (3), for each row we only consider the difference corresponding to the
k lowest values in Di, i.e., the k nearest neighbours of the sample investigated for that row. After
obtaining ME and MD which respectively denote the neighbouring structure changes introduced
by the encoder and decoder, we then calculate the row-wise sum of |ME | and |MD|, yielding
two ranking lists RE and RD), respectively. A row with a larger value in RE indicates huger
inconsistency between the corresponding input sentence encoding and latent variable’s neighbouring
structures, which is more likely to correspond to low-density latent regions (and that applies to
decoder parallel for RD). Moreover, the existence of holes can lead to two potential situations which
can also be identified using our method. Take RE as an example (it is parallel applied to RD):

1. Large row-wise negative values in RE (e.g., the i-th row): it means that several small values
in the i-th row of sort(Di) minus the corresponding large values in the same row of sort(Dl), i.e.,
several semantics-similar sentences regarding xi in the input space are mapped to distant regions in
the latent space.

2. Large row-wise positive values in RE (e.g., the i-th row): it means that several large values in
the i-th row of sort(Di) minus the corresponding small values in the same row of sort(Dl), i.e., a
local neighbourhood in the latent space are encoding sentences which are originally distant in the
input space.

4 Experimental protocol

4.1 Experimental settings

Datasets. We consider three large-scale datasets commonly used for VAE-based language modelling
task in previous studies: Yelp 2015 [32], Yahoo [33, 32], and a downsampled version of SNLI [2, 17].
Their statistics is summarised in Tab. 1.

Baselines. To verify the robustness and generalisability of our method, we include five popular
architectures for comparison, which are to be pre-trained to converge using hyperparameters below
(they all have official code provided):
- Basic VAE [3]: using LSTM and KL annealing for mitigating the posterior collapse issue.
- β-VAE [11]: utilising an adjustable β to balance the reconstruction loss and the KL term.
- Cyclical VAE [9]: employing cyclical annealing for the KL term.
- iVAEMI [8]: replacing Gaussian-based posteriors with the sample-based distributions.
- BN-VAE [35]: leveraging the batch normalisation for the variational posterior’s parameters.

Hyper-parameters setting. For fair comparison, we follow [15, 10, 8] to set hyper-parameters.
The encoders and decoders of all baselines are constructed using the one-layer LSTM with 1024
hidden dimension and 512-dimensional word embeddings. The dimension of the latent variable
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Table 1: Statistics of the Yelp 2015, Yahoo, SNLI datasets.
Dataset Train Dev. Test Avg. length Vocab.
Yelp15 100,000 10,000 10,000 96.7 19.76K
Yahoo 100,000 10,000 10,000 79.9 19.73K
SNLI 100,000 10,000 10,000 14.1 9.99K

is 32. The popular KL annealing strategy [3] is applied, where the scalar weight of the KL term
linearly increases from 0 to 1 during the first 10 epochs. Dropout layers with the probability 0.5 are
installed on the encoder’s both input-to-hidden and hidden-to-output layers. All baselines are trained
with Adam optimiser with initial learning rate at 8e-4. The model parameters are initialised using a
uniform distribution U(−0.01, 0.01) except word embeddings with U(−0.1, 0.1). The gradients are
clipped at 5.0. Early stopping with patience of 5 epochs is adopted when training all models.

4.2 Preliminary experiment: embedding VAE’s input and output sentences

Before setting up our method for latent hole detection, we need to first decide the most proper
way to form the semantic spaces for input and output sentence encoding (i.e., X and X′) and
calculate similarity matrices. The most straightforward way is to leverage the mean pooling results
of the native word embeddings (with stop-words excluded) of both trained encoder (for inputs)
and decoder (for outputs), respectively. However, very recently [1] found that even state-of-the-art
VAE-based language models tend to memorise the local information (e.g., the first and last words
in a sentence) rather than the global one. Based on their observation and insight, we therefore
suspect VAE’s undesirable memorisation of local information is a potential cause of holes. For the
encoder and decoder we hereby consider the embeddings of the first word, the last word, and the
concatenation of both as three candidates for feasible encodings of inputs and outputs. Nevertheless,
these four listed approaches all ignore important contextualised signals such as bi-grams. Therefore,
we also add BERT embedding [29] as the fifth method to consider, which is given by mean pooling
over the second last layer of the BERT network [5] and has state-of-the-art performance. To evaluate
which encoding strategy to choose, we simply need to see which one leads to the most stable similarity
matrices throughout the VAE pipeline (i.e., |ME | and |MD| in § 3 have small values). Following
previous works [28, 22], in our experiments we identify vector neighbourhood based on cosine
distance.

4.3 Detecting holes and measuring their impact.

After evaluating embedding strategies in § 4.2, we will use the most appropriate one to detect holes
in the VAEs’ latent spaces and demonstrate how they affect model performance. We will also present
results on all other embedding methods for ablation studies.

The core of this experiment lies in the correlation tests on three ranking lists. The first list is the
output of our proposed method in § 3, where the samples with higher likelihood of belonging to a
hole are assigned with higher ranks. We only consider the top k samples here. Specially, to separately
measure latent holes’ influence on the encoder and decoder, we will respectively include RE and
RD for comparison. The second list is the automatic evaluation results, where the k samples are
ranked based on the perplexity metric. For the third list, we plan to conduct a human evaluation
on the sentence quality. More concretely, in each evaluation iteration, we will randomly pick three
samples and shuffle them, with the restriction that their rankings have gaps which are at least 10% of
k. Next, three human annotators will be invited to rank their quality independently. We will repeat
this process for multiple iterations (with duplicated sampling allowed) until enough data is collected.
Finally, we will report the correlation coefficients between the first and the second lists, as well the
first and the third: the higher they are, to a larger extent the corresponding module (i.e., encoder or
decoder) is affected by the existence of holes. Furthermore, if the correlation is consistently strong,
we can then recommend our hole-detecting technique to be adopted as a novel quality metric for
VAE-based language models.
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4.4 Are holes really vacant?

Previous studies on image and music have validated the existence of holes in a VAE’s latent space, as
well as demonstrated that such phenomenon will degrade the models’ performance [24, 7, 25, 14].
They intuitively hypothesised that the variational posterior of low-density latent spaces is close to
zero, i.e., no information is learned and the decoded outputs are almost random [24, 30]. However,
this hypothesis has never been empirically justified. Is it possible that these holes actually capture
some signals but in a different (and undesirable) fashion? In this experiment, we will deeply dive into
the latent holes and visit this unexplored direction.

We will conduct experiments with two stages. In the first stage, from each of the top k regions which
are identified to be of low-density with highest likelihood in § 4.3, we will sample one latent variable
(whose coordinate is denoted as ci (s.t. i ∈ [1, k])) and decode it into a sentence. Similarly, in the
second stage, from the latent space of the conjugated untrained VAE model, we will decode the latent
variables with coordinates in {ci|i ∈ [1, k]}. For each generated sentence, following [26] we will
calculate its word-level t-gram entropy as

Ft = −
∑
i,j

prob(bi, j)log2(prob(bi, j)/prob(bi))

= −
∑
i,j

prob(bi, j)log2prob(bi, j) +
∑
i

prob(bi)log2prob(bi),
(4)

where bi is a block of t− 1 words (i.e., a (t− 1)-gram), j is an arbitrary word that follows. In such
case, prob(bi) and prob(bi, j) prob(bi) respectively denote the probability of bi and the t-gram [bi;
j]. We consider t ∈ {1, 2, 3} in our setup.

For each i, we compare the t-gram entropy of two output sentences in both stages, and use the p-value
of two-tailed t-tests with Bonferroni correction [6] to examine significance. If the sentences obtained
at the first stage have significantly lower entropy than their counterparts at the second, where the
decoded latent variables of the both sentences are at the same position (i.e., with same coordinates),
then we can show that even the low-density holes actually encode some signals; otherwise they are
purely vacant regions and full of randomness.
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