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Abstract

Federated Learning (FL) enables the edge devices to collaboratively train a joint
model without sharing their local data. This decentralised and distributed approach
improves user privacy, security, and trust. Different variants of FL algorithms have
presented promising results on both IID and skewed Non-IID data. However, the
performance of FL algorithms is found to be sensitive to the FL system parameters
and hyperparameters of the used model. In practice, tuning the right set of parame-
ter settings for an FL algorithm is an expensive task. In this preregister paper, we
propose an empirical investigation on five prominent FL algorithms to discover the
relation between the FL System Parameters (FLSPs) and their performance. The
FLSPs adds extra complexity to FL algorithms over a traditional ML system. We
hypothesise that choosing the best FL algorithm for the given FLSP is not a trivial
problem. Further, we endeavour to formulate a single easy-to-use metric which
can describe the performance of an FL algorithm, thereby making the comparison
simpler.

1 Introduction

Data is naturally found to be decentralised and distributed across the edge devices. Conventional
Machine Learning (ML) approaches involve first collecting this data into a central server and then
training a global model using the aggregated dataset. Though this centralised form of training
provides better control, however, it suffers from two paramount issues. The first is the privacy of
the data owners as governed by the General Data Protection Regulation [1] and Health Insurance
Portability and Accountability Act [2]. The other major concern with traditional ML approaches is
the communication overhead. For instance, uploading the data from a resource-limited end-device to
a central server depletes the battery.

Federated Learning (FL) [3] is a new paradigm which allows the edge devices called clients to train a
global model collaboratively. FL involves multiple communication cycles. In each cycle, a set of
clients train an ML model on their local data and share only the model updates (gradients) with the
central server. The central server then aggregates these updates from a pool of selected clients and
does a single update to the global model. Finally, the server shares the updated global model back to
the clients thereby completing one cycle. Thus, instead of sharing the data, the clients only share the
marginally smaller sized model updates, hence reducing communication overheads and avoiding a
potential privacy leak.

Since its inception, FL has shown promising results on training decentralised and Non-Independent
and Identically Distributed (Non-IID) datasets. Hard et al. [4] introduced a recurrent neural network
model for the next-word prediction task in Google virtual keyboard (GBoard) on millions of mobile
devices. Similar large-scale system design of FL is described in [5]. Nevertheless, FL has its own
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set of critical challenges and downsides, especially in scenarios where deep learning models are
used. The performance of an FL algorithm is found to be highly sensitive to both the system- and
hyper-parameters of the model (for instance, a deep neural network) [6]. In practice, exploring the
right set of configuration settings for an FL algorithm is a costly and arduous task. The primary
reason being that training FL algorithms in a simulation setting is much slower than the conventional
DL approaches since it involves training multiple models sequentially.

In this paper, we present FedPerf, an empirical study on five prominent FL algorithms to capture the
relation between the parameters and performance. To provide for the unique scenario created by FL,
we define Federated Learning System Parameters (FLSPs). These FLSPs are an added complexity in
FL over a traditional ML system. For example, one significant FLSP is the skewness in the Non-IID
data distributed among the client devices. A highly skewed data could comprise a scenario with
each client containing only a single label data in a multi-class classification problem. Other common
FLSPs include the number of participating clients, the communication and processing budget of
individual clients, and fraction of stragglers. We are inspired by the previous work from Zhang and
Wallace [7], and Semwal et al. [8], which presents a similar analysis on convolutional neural networks
and Transfer Learning [9], respectively. It is envisaged that this work will significantly reduce the
efforts of practitioners and researchers expend in finding the right setting. Here we will explore and
report the results of a large set of experiments on a total of five different state-of-the-art FL algorithms.
Many of the recent work in FL either present a conceptual survey or only discuss the mean accuracies
for their own set of selected hyperparameters values. However, we found that the performance of FL
algorithms is highly susceptible to the choice of constant parameters. We hypothesise that choosing
the right FL algorithm and hyperparameters for the given FLSPs while being able to tune the FLSPs
is not a trivial task. Furthermore, we are interested in identifying the inherent limitations of the FL
system. Developing a thorough understanding of the FL system will help us lay the groundwork for
expanding FL with Secure Multi-Party Computation (SMPC), Homomorphic Encryption (HE), and
Differential Privacy (DP).

We explore the following aspects of FL:

1. How do we characterise the effect of FLSPs on the performance of an FL system?

2. How can we formulate a single easy-to-use metric that can explain the performance of an
FL system?

3. Given FLSPs for a system, can we identify the best performing FL algorithm?

2 Related Work

Lim et al. .[10] discuss challenges in FL that occur in highly heterogeneous systems. These include
communication costs, resource allocation, and privacy and security in the implementation of FL at
scale. Similarly, Aledhari et al. [11] provide industry-specific obstacles in FL, along with detailed
service use-cases. However, both of these manuscripts do not address the complexity involved in
implementing and comparing different FL algorithms. Keeping these papers in mind, we further
investigate the motivation behind FLSPs and Federated Learning Metric (FLM).

FLSPs: Understanding the every-increasing list of system parameters, which affect FL is
hard to keep track off. Further, investigating every single FL system configuration is virtually and
computationally infeasible. We do see an attempt in Hu et al. [12] to determine the important
parameters in FL systems. They investigate unique parameters like dataset partitioning styles and
diversity of datasets. Furthermore, the authors have made attempts to present metrics that could track
these parameters separately. Similarly, in Li. et al. [13], we see a new parameter called client fairness
being discussed, thus prompting the idea that there could be more undiscovered parameters which
might be important and yet not being brought into the discussions. In, [14], the authors compare
the performance of multiple FL algorithms for one FLSP – data distribution heterogeneity (either
IID or non-IID). Based on the performance analysis reported in [14], the number of simulations
for five algorithms, and a single FLSP, would be in the order of O(mn) where m is the number of
FL algorithms and n is the different variations of each FLSP. Thus, exhibiting the complexity of
choosing FLSPs. Fig. 1 further showcases the complexity in tuning multiple FLSPs along with
hyperparameters for an FL System. As can be seen from the figure, the number of experiments
increases by polynomial times with the increase in the FLSPs. We believe understanding the
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Figure 1: FLSP Tuning: A graphical demonstrations of the complexity of FLSP tuning to identify
the performance of FL algorithms. Here, we have to discretise continuous FLSP spaces necessarily,
(here the percentage of stragglers in the system) to reduce the parameter search complexity. Even
then, we have nine configurations. Furthermore, adding in the hyperparameter search leads to a
doubling of the parameter tuning complexity.

relationship between FLSPs and the performance of FL Systems, could help reduce the time required
to simulate FL algorithms.

In this paper, we, therefore, attempt to provide a broad definition inclusive of all current and potential
future FLSPs. Furthermore, we provide comprehensive coverage of FLSPs known through the
literature and our findings. Finally, we provide an empirical correlation between FLPSs and FL
performance.

FLM: As reported in Hu et al. [12], tracking performance is increasingly complex since
there could be multiple metrics for the same FL system. Liang et al. [15] provides an industry-
specific empirical coverage of the parameters that are valuable in real datasets, such as algorithm
robustness and fairness between corporations. As evidenced above, the literature is not yet complete
enough to provide simple easy-to-track metrics in FL. This paper attempts to provide clarity on these
metrics. We investigate how we can reduce the number of metrics to be tracked and come up with a
simple easy-to-track metric (denoted by FLM).

3 Methodology and experimental protocol

Since we wish to understand the impact of FLSPs on the system performance, we will begin with
a simple experiment over baseline federated datasets from LEAF [16]. Table 1 presents a list of
currently identified FLSPs. We tune the five algorithms with respect to the FLSPs, by tuning one FLSP
at a time while keeping the rest constant. The algorithm performance is measured over the metrics
suggested in Table 2. We expect this tuning to get harder with increasing FLSPs, as demonstrated by
Fig. 1. Through this empirical analysis of the FL algorithms over varying FLSP configurations, we
expect to find matching between the optimal algorithm to be used for the given FLSPs. Furthermore,
to improve performance measurement, we will understand the various suggested metrics in literature
and provide an algorithm-matching based on the right FLM and the given FLSPs. Our experiments
will primarily consist of using the LEAF datasets combined with five prominent FL algorithms in the
literature to come up with this matching. Precisely, the experiments will be based on:
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FLSP Types
Datasets LEAF datasets and Synthetic datasets

Data Partitioning Vertical, Horizontal and Hybrid
Data Variety Text, audio and video

Data Skewness Difference in data size across clients
Data Distribution Heterogeneity IID and Non-IID

Communication Network bitrate, Number of global rounds
Number of clients Vary over possible number of clients

Stragglers Percentage varying from 0%-95%
ML Models Choosing multiple ML models appropriate for the task

Synchronicity Synchronous and Asynchronous
Client Fairness Maximum performance difference (in %) the over clients

Computational power number of local rounds

Table 1: FLSP: List of system parameters which affect the performance of FL algorithms

• the variation in the FLSPs,

• performance measurement over multiple metrics and determining the right FLM,

• computing over a multitude of baseline FL datasets and algorithms.

FLSPs: Prompted from previous literature works [12], [15] we first list the possible FLSPs in Table 1.
Due, to the limited scope of this article, we decided to solely focus on the parameters related to FL.
We do understand that a lot of supplementary parameters exist for DP, SMPC, and HE. We however,
defer this work to future articles.
Metrics: Several metrics are suggested to keep track of how an FL system performs. We list the
proposed metrics in Table 2. We realise that some metrics target the budget available while others
define the performance of the algorithm and appropriately segregate them. Therefore, our experiments
involve tracking each one of these metrics to understand how the FLSPs and the choice of algorithms
affect them. Similar to FLSPs, we postpone discussion of metrics relating to DP, SMPC, and HE to
the future work.

Metrics Description
Model Accuracy and Loss

Fairness Similar model performance over clients
Communication Cost Number of global rounds, data transmitted
Computational Power Number of local rounds, Convergence

Table 2: FL Metrics

FL algorithms and datasets: We decide to start with five baseline Federated Algorithms - FedAvg
[3], FedProx [17], FSVRG [18], CO-OP [19] and q-FedAvg [13]. These cover different optimisation
methods, synchronicity and fairness in FL. We use the baseline datasets from the LEAF.
Embracing Open-Science: Finally, besides the FLSMs, we realise that a number of articles in FL,
lack implementations of the proposed algorithm, therefore requiring heavy hyperparameter tuning
and adjustments to the proposed ML model. We, therefore, will provide implementations of all our
code, where new implementations will continually be added.
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