
Generalization Across Space and Time in
Reinforcement Learning

Alex Lewandowski
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
lewandowski@ualberta.ca

Abstract

Reinforcement learning relies on generalization concepts from supervised learning.
For example, generalizing to new states or environments corresponds to test-
set generalization or transfer learning from supervised learning. While these
concepts are applicable to reinforcement learning, they fail to consider the entire
reinforcement learning problem. To address this, I characterize generalization
in reinforcement learning across three axes: state-space, action-space and time.
For my pre-registration proposal, I describe a method to transform a classification
dataset into a contextual bandit environment and then a Markov decision process. I
then propose an experiment in which I randomly corrupt labels of the classification
dataset, inducing a new Markov decision process, and probe generalization across
the three axes in online and offline reinforcement learning, including both model-
free and model-based methods.

1 Introduction

In Reinforcement Learning (RL), an agent is tasked to maximize its sum of future reward in an
unknown environment that is modelled by a Markov Decision Process (Sutton and Barto, 2018). To
accomplish this, an agent learns various functions to guide its behavior, such as the value, action-value,
policy, state-transition or reward-transition model. The classic tabular approach to RL learns these
functions in an array or table, indexed by state and/or action. However, tabular methods do not
generalize – learning at one state or action has no impact on learning at other states and actions.
The goal of function approximation is to enable the agent to leverage learning from previously
encountered states and actions to help the agent in yet unseen states and actions. This powerful idea
has led RL, in combination with neural networks, to success in games like Atari (Mnih et al., 2013),
Chess, Shogi, Go (Schrittwieser et al., 2019) and StarCraft (Vinyals et al., 2017).

The Markov Decision Process (MDP) formalism underpins task specification in RL (White, 2016;
Lattimore and Szepesvári, 2020). An MDP is defined by the tuple (S,A, r,P, µ, γ), where A
denotes the action space, S is the state space, r : S × A → R is the reward function that maps a
state and an action to a reward, P : S × A × S → [0, 1] is the state transition function, µ is the
initial state distribution and γ ∈ [0, 1] is the discount factor. RL differs from supervised learning in
three important ways. First, the feedback that the agent receives from the environment carries less
information than a supervised signal because it depends on the action taken by the agent. Second, the
states that an RL agent encounters are temporally correlated and also determined by the actions taken
by the agent. Lastly, and most importantly for notions of generalization, the problem specification
for an RL agent is generally not determined by a dataset that can be split into testing and training
components. An RL agent gathers its own data according to a behavior policy πb. Hence, it is not
always clear what it means to generalize in RL.

Pre-registration workshop NeurIPS (2020), Vancouver, Canada.



In supervised learning, if a function approximator f : X → Rd is trained on a set Xtrain sampled from
X , then f generalizes well if the difference between the error on the testing set Xtest and the error on
the training set Xtrain,RXtest(f)−RXtrain(f), is small. Neural networks’ success can be attributed to
their ability to learn complex nonlinear relationships without overfitting and impeding their ability
to generalize (Zhang et al., 2016). This has led to advances in both supervised and unsupervised
learning methods (Goodfellow et al., 2014; Kingma and Welling, 2013), and several theories have
been put forward to partially explain the generalization capabilities of neural networks (Arora et al.,
2019; Ba et al., 2020; Goldblum et al., 2019). In these settings, and in contrast to RL, practitioners
have the luxury of sampling a training and testing set from one larger dataset.

In this paper, I identify three axes of generalization across state-space, action-space and time.
For each axis, I summarize notions of generalization in the RL literature. I then propose an RL
environment that constructs an MDP using a classification dataset, which allows the probing of an
agents generalization capabilities. Based on the three aforementioned axes of generalization and the
classification-based MDP environment, I investigate both model-free and model-based agents and
their ability to generalize in offline and online RL through a classification-label corruption experiment
(Zhang et al., 2016).

2 Generalization in Reinforcement Learning

In this section, I examine generalization in RL across three axes: state-space, action-space and
time. First, I define generalization in both state and action space before discussing previous work
investigating these two notions of generalization. Next, I define a new notion of generalization
across time that has not been previously proposed. While state-space generalization is a well
explored concept in RL, action-space generalization is less explored, with temporal generalization left
unexplored. I argue that generalization in action-space and time is a unique challenge, and successful
generalization across these axes is pivotal for a true synthesis of neural networks and RL.

One type of generalization that I will not discuss is generalization to new MDPs, which is closer
to transfer learning from supervised learning. In particular, I do not consider generalization to
changes in the MDP, such as when the state or reward transition function changes (Packer et al.,
2018). The work of Cobbe et al. (2018), for example, proposes the CoinRun environment which
can procedurally generates levels in a platformer game. One can then generate separate training and
testing environments so that the agent can be evaluated on the hold-out set of testing environments.
This notion of generalization across MDPs can be seen as generalization to unseen states if the
difference between MDPs is only in the start-state distribution. In general, the generated MDPs
in CoinRun can differ substantially in ways that are difficult to quantify. The classification-based
environment proposed in this paper leverages a similar idea by evaluating the agent on states from
a test set. The test set is not a separate environment, however, and it is only used for evaluation
purposes.

2.1 State-space Generalization

State-space generalization is the most commonly explored notion of generalization in RL. Given
a state s that has not seen by the agent during learning, the agent is evaluated on quantities related
to that state. In model-free methods for example, an agent may be evaluated on the accuracy of its
value estimate or the KL-divergence of its learned policy distribution to the true policy distribution.
Model-based methods can be evaluated by their estimate of immediate reward in expectation over all
actions. In online RL, this notion of generalization is not straightforward because the agent does not
put weight on states outside of its current stationary distribution dπ(s). It would be unreasonable to
expect an agent to generalize to an arbitrary state. More reasonable would be to expect the agent to
generalize to states near the stationary distribution dπ(s), as changes in the policy (from learning)
will change this distribution. In offline RL, the agent is expected to generalize to states reachable by
its learned target policy, which is generally follows a different distribution from its training dataset.

Generalization across state-space has been previously studied with respect to an RL agent’s ability
to overfit to its training experience. This was investigated in Atari games (Bellemare et al., 2012),
with proposals to increase stochasticity with sticky actions to minimize overfitting (Machado et al.,
2017). Work by Zhang et al. (2018), however, found that agents routinely overfit by memorizing
action sequences in the environment, even with sticky actions. Work by Farebrother et al. (2018)

2



investigates regularization methods from supervised learning, such as dropout (Gal and Ghahramani,
2015). They found that regularization can help generalization to different versions of the same Atari
game. Overall, this notion of generalization is most amenable to supervised learning concepts.

2.2 Action-space Generalization

Generalization to out-of-distribution actions is a less explored notion compared to state-space gener-
alization. To evaluate action-space generalization, the environment can be reset to a state that the
agent has previously encountered. From this state, the agent is evaluated on quantities related to
actions that were not taken. In model-free methods for example, the agent can be evaluated on its
estimate of the action-value for an action not taken by the agent. For model-based methods, one might
measure how accurate the estimate of the reward is for actions not taken. This type of generalization
is arguably more important than state-space generalization because policies in RL tend to place
non-zero probability on all actions for exploration purposes.

Action-space generalization has seen limited investigation. The work of Chandak et al. (2019) finds
that learned action representations are able to improve generalization for large discrete action spaces.
No work has investigated the interplay between learned representations from state and its effect on
generalization across actions.

2.3 Temporal Generalization

I define temporal generalization as an agent’s ability to predict out-of-distribution quantities that are
extended in time. Model-free methods do not explicitly represent time due to the Markov assumption.
However, the TD error (Sutton and Barto, 2018) encodes temporal information through differences
in successive states. If a model-free agent is trained with 1-step bootstrapped returns for example,
how well does the agent approximate the TD error for n-step bootstrapped returns? For model-based
methods, temporal generalization is natural. If a recurrent reward-transition model is trained on
sequences of lengthH for example, the agent’s reward transition model can be evaluated on sequences
of length 2H . Temporal generalization implicitly depends on state and action generalization and,
hence, is necessarily harder than them.

Generalization across time has not been explicitly explored in the literature. From the perspective of
gradient interference, Bengio et al. (2020) proposed measuring interference loss during optimization
and identifies a relationship between generalization and interference solutions with bootstrapping.
While interesting, this notion of generalization is distinct from the work presented here which focuses
on generalization.

3 Transforming Classification Problems Into MDPs

Evaluating generalization in RL is difficult in part due to the complexity of MDP environments. While
there are several tabular environments that can evaluate other RL capabilities (such as exploration),
striking the balance between tractability and complexity is a challenge in evaluating generalization
and function approximation. Some candidate environments for assessing generalization in RL include:
classic control environments (Osband et al., 2019; Brockman et al., 2016), Atari (Bellemare et al.,
2012) and MuJoCo (Todorov et al., 2012). Training agents on Atari and MuJoCo is time consuming,
and subject to high variance. Even for classical control experiments, such as cartpole (Barto et al.,
1983) and mountain car (Moore, 1990), it is difficult to assess an agent’s ability to generalize at a
particular query state when the agent’s stationary distribution dπ(s) is unknown. Without knowing
the density associated with the query state, it is possible that the query state is unreachable, or that it
is sufficiently different from all previously encountered states that it is unrealistic, and unnecessary,
for the agent to generalize to that state. To ease these difficulties, I propose constructing an MDP
using a classification dataset.

3.1 From Classification to Contextual Bandit

A contextual bandit problem is defined by a set of states (or contexts) S, a set of actions A and a
reward function r(s, a) : S ×A → R. Any classification dataset can be transformed into a contextual
bandit problem, for example the MNIST dataset is a common contextual bandit testbed (Osband

3



et al., 2019; Chen et al., 2019). To formalize this, let the classification dataset be represented as a set
of n data points X = {x1, . . . , xn} where each xi ∈ Rd and labels Y = {y1, . . . , yn} where each
yi ∈ [k]. Then, a contextual bandit problem can be constructed by letting the set of contexts be equal
to the set of data points. An agent interacts with this environment by receiving a random state s = xi
and choosing an action a, i.e. by classifying the data point. The reward is calculated as a function
of the real label of the data point yi and the action selected a. Usually, we give the agent a binary
reward of 1 if a = yi and 0 otherwise.

3.2 From Contextual Bandit to MDP

Contextual bandit environments do not have a temporal component, because each new state is
randomly sampled regardless of the taken action. To construct an MDP, I must specify the structure
of state transition, the reward structure, discounting, and time limits for the agent.

State transitions: The environment is initialized with a randomly chosen data point of the first label
which the agent must classify. There are two types of state transitions dependent on whether the
action is optimal or not. If the action is optimal, then the classification is correct, and the next state
will correspond to a data point of the next label. However, if the action selected is incorrect then the
next state will be from the same class. A more difficult alternative of this environment will have the
agent start from the initial state if the incorrect action is chosen.

Reward structure and discounting: While the agent could still receive a reward of 1 for a correct
classification and a reward of 0 otherwise, this would give an unfair advantage to the agent that
estimate the reward function and selects actions myopically. To alleviate this, a reward of 1 will be
given to the agent only after reaching the final label. A discount factor γ = 0.99 is also necessary so
that the agent prefers to quickly reach the terminal state.

Time limits: For a dataset with N labels, I will treat the last label in the dataset as a terminating state.
If an incorrect action does not reset the episode, then the expected number of steps to reach the end is
N2. If an incorrect action results in a reset, a uniformly random behavior policy will take NN steps
to successfully complete an episode. This can be prohibitively long, and so the number of labels may
be limited to M << N . In any case, I will cut-off the episode at 200 time steps, but not marking this
as termination if the last label was not reached (Pardo et al., 2017).

4 Experimental Design

To evaluate the axes of generalization outlined in Section 2, I will convert the MNIST classification
dataset into an MDP. MNIST has been previously studied as a contextual bandit problem (Chen
et al., 2019; Joachims et al., 2018), but I have not seen work studying it as an MDP. This will
allow me to probe action-space and state-space generalization in a manner similar to a classification
problem. The benefit of using this construction is that I can use hypotheses from the supervised
learning literature and investigate them in the MDP setting. I will reproduce the label-corruption
experiment of Zhang et al. (2016). In particular, I investigate the effect of partial label corruption
where labels in the training set have a probability p of being corrupted to incorrect labels. If one of
the RL methods successfully train and generalize in the partially corrupted case, I will also investigate
full corruption where all labels are randomly reassigned in the training set. An experiment in similar
spirit was conducted by Zhang et al. (2018), where rewards were randomized. However, this type of
randomization does not systematically change state-transitions and optimal actions as it does in my
environment construction.

My primary interest is the control problem, and so I will have two separate agents that learn either
an action-value network or a reward-transition model. The agent using an action-value network
will explore with ε-greedy actions and use Q-learning updates. The reward-transition agent will use
a recurrent network and interact with the environment using random-shooting, which is a strong
baseline (Wang et al., 2019). The recurrent model will be trained to minimize the L2 error between
its estimates of the reward and its received rewards. My reason for not including policy gradient
methods is that they do not presently lend themselves to action-space generalization (since they are
defined as a mapping to a specific action or a distribution over actions) or temporal generalization
(since they do not follow a Bellman equation).

4



I will investigate generalization in both online and offline RL due to possible discrepancies between
the two training regimes (Agarwal et al., 2019). Similar to work by Fu et al. (2020), offline training
will consist of three different regimes corresponding to the initialized buffer, the replay buffer half
way through training and the replay buffer after training.

4.1 Experiment Details

Generalization metrics: Let f(s, a) denote the agent’s Q(s, a) or r(s, a) for model-free or model-
based respectively, similarly f∗(s, a) for the true reward / optimal value. For a policy π, de-
note the stationary distribution as dπ(s). Then my MDP construction allows us to partition the
state-space into i.i.d. samples from dπ(s), Strain and Stest. Denote the set of states that share
the label of state s as Strain(s). The states of the replay buffer D are a subset of the train-
ing partition, Ds ⊂ Strain. Given s, a from the replay buffer, I sample a state with the same
label from the test set s′ ∼ Stest. The state-space generalization metric compares the opti-
mal quantity with the predicted quantity at the test state s′ after taking the training action a,
Mstate(f,D) = Es,a∼D, s′∼Stest(s)

[
‖f∗(s′, a)− f(s′, a)‖2

]
. For action-space generalization, I

consider the difference between the optimum quantity and the prediction at the test state s′ for the
worst-case action, Maction(f,D) = Es∼D,s′∼Stest(s)

[
maxa′ ‖f∗(s′, a′)− f(s′, a′)‖2

]
.

The generalization metrics for state-space and action-space evaluate 1-step rewards or returns. I now
extend this to generalization across time. Let {st, at}Ht=1 be a state-action sequence of length H. The
model-based agent is trained to predict the next H rewards and the model-free agent uses H-step
returns. Temporal generalization evaluates both agents on sequences of length 2H where the first H
state-actions st, at are a sequence from the replay-buffer, and s′t is sampled from Stest with the same
label as st. The remainder of the sequence is simulated in the test environment starting at s′H and
with randomly selected actions {at+H}Ht=1. The metric for evaluating the temporal generalization
of an agent is thus, Mtime(f,D) = E

[∑2H
t=1 ‖f∗(st, at)− f(st, at)‖2

]
. For model-free methods,

this metric does not explicitly represent time and instead represents further out-of-distribution state
and action generalization. If this metric is insufficient, then one can also compare TD errors on
the relevant horizons: ‖f(s1, a1) − γt−1 maxa′ f(s2H , a

′) −
∑2H
t=2 γ

t−2r(st, at‖2. This is less
justified, because it is not proven that Q-learning minimizes this objective. Furthermore, there is no
optimal target (f∗) for comparison. Nevertheless, this quantity does capture a notion of temporal
generalization in model-free learning.

Online training protocol: The online agent initializes a replay buffer with 10 trajectories from
a random policy before proceeding to interleave environment interaction with parameter updates.
Training is concluded when the agent solves the environment 10 times in a row.

Offline training protocol: The offline agent uses the replay buffer of the online agent at one of three
stages: initialization, half-way through training and after training has concluded. The agent uses this
fixed dataset to optimize the reward model or action-value until training converges.

Hyperparameters: For all models, I use ADAM and learning rates will be swept over α ∈
{0.5n}10n=1. Labels will be corrupted according to p ∈ {0.0, 0.5, 1.0}. For model-free methods,
ε = 0.1. The reward model predicts rewards H = 5 steps into the future and the model-free agent
uses 5-step returns.

5 Hypotheses and Possible Conclusions

In general, my hypothesis is that generalization is more difficult as the problem moves from supervised
learning to the MDP. I hypothesize that model-free and model-based methods are able to generalize
equally well in state-space. However, I suspect that model-based methods will generalize better than
model-free methods in action-space and time.

Model-free generalization: I hypothesize that model-free methods will successfully generalize
to unseen states corresponding to seen labels, because they correspond to the same underlying
state. However, I suspect that they will be unable to generalize to unseen labels. For action-space
generalization, I expect that model-free methods will be able to generalize to out-of-distribution
actions, but not as well as the model-based agent. This is because the state is processed as an input to
the network, whereas discrete actions are indexes on the output of the network. This would diminish

5



a network’s ability to generalize to other actions. Lastly, I hypothesize that generalization across
time to worsen greatly as the number of bootstrapping steps increases. When labels are corrupted, I
hypothesize that model-free methods will not be able to fit the experience from the label-corrupted
MDP.

Model-based generalization: Estimating transition models in model-based RL is essentially a
supervised learning problem. Hence, I expect that transition models will generalize well across
the three different axes. Specifically, given an unseen state of a seen label, both state and reward
transition models will successfully generalize. However, I predict that temporal generalization will
suffer for longer horizons but not to the extent of model-free methods. I would not expect transition
models to generalize to unseen labels, as I would not expect a supervised learning model to do
0-shot generalization without explicit (meta-) training. When labels are corrupted, I hypothesize that
transition models will be able to fit the corrupted experience.

References
Agarwal, R., Schuurmans, D., and Norouzi, M. (2019). An optimistic perspective on offline rein-

forcement learning. arXiv:1907.04543.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. (2019). Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks. arXiv:1901.08584.

Ba, J., Erdogdu, M., Suzuki, T., Wu, D., and Zhang, T. (2020). Generalization of two-layer neural
networks: An asymptotic viewpoint. In International Conference on Learning Representations.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
(5):834–846.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2012). The arcade learning environment:
An evaluation platform for general agents. arXiv:1207.4708.

Bengio, E., Pineau, J., and Precup, D. (2020). Interference and generalization in temporal difference
learning. arXiv:2003.06350.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym.

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., and Thomas, P. S. (2019). Learning action
representations for reinforcement learning. arXiv:1902.00183.

Chen, M., Gummadi, R., Harris, C., and Schuurmans, D. (2019). Surrogate objectives for batch
policy optimization in one-step decision making. In Wallach, H., Larochelle, H., Beygelzimer,
A., dÁlché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing
Systems 32, pages 8825–8835. Curran Associates, Inc.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2018). Quantifying generalization in
reinforcement learning. arXiv:1812.02341.

Farebrother, J., Machado, M. C., and Bowling, M. (2018). Generalization and regularization in dqn.
arXiv:1810.00123.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning. arXiv:2004.07219.

Gal, Y. and Ghahramani, Z. (2015). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. arXiv:1506.02142.

Goldblum, M., Geiping, J., Schwarzschild, A., Moeller, M., and Goldstein, T. (2019). Truth or
backpropaganda? an empirical investigation of deep learning theory. arXiv:1910.00359.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial networks. arXiv:1406.2661.

6



Joachims, T., Swaminathan, A., and de Rijke, M. (2018). Deep learning with logged bandit feedback.
In International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv:1312.6114.

Lattimore, T. and Szepesvári, C. (2020). Bandit Algorithms. Cambridge University Press.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M. (2017).
Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. arXiv:1709.06009.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv:1312.5602.

Moore, A. W. (1990). Efficient memory-based learning for robot control. Technical report, University
of Cambridge.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McKinney, K., Lattimore, T.,
Szepezvari, C., Singh, S., Roy, B. V., Sutton, R., Silver, D., and Hasselt, H. V. (2019). Behaviour
suite for reinforcement learning. arXiv:1908.03568.

Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., and Song, D. (2018). Assessing generalization
in deep reinforcement learning. arXiv:1810.12282.

Pardo, F., Tavakoli, A., Levdik, V., and Kormushev, P. (2017). Time limits in reinforcement learning.
arXiv:1712.00.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver, D. (2019). Mastering atari, go, chess and
shogi by planning with a learned model. arXiv:1911.08265.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning - an introduction. Adaptive computation
and machine learning. MIT Press.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani, A., Küttler,
H., Agapiou, J., Schrittwieser, J., Quan, J., Gaffney, S., Petersen, S., Simonyan, K., Schaul, T.,
van Hasselt, H., Silver, D., Lillicrap, T. P., Calderone, K., Keet, P., Brunasso, A., Lawrence, D.,
Ekermo, A., Repp, J., and Tsing, R. (2017). Starcraft II: A new challenge for reinforcement
learning. arXiv:1708.04782, abs/1708.04782.

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois, E., Zhang, S., Zhang, G., Abbeel, P., and
Ba, J. (2019). Benchmarking model-based reinforcement learning. arXiv:1907.02057.

White, M. (2016). Unifying task specification in reinforcement learning. arXiv:1609.01995.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding deep learning
requires rethinking generalization. arXiv:1611.03530.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. (2018). A study on overfitting in deep reinforcement
learning. arXiv:1804.06893.

7


	Introduction
	Generalization in Reinforcement Learning
	State-space Generalization
	Action-space Generalization
	Temporal Generalization

	Transforming Classification Problems Into MDPs
	From Classification to Contextual Bandit
	From Contextual Bandit to MDP

	Experimental Design
	Experiment Details

	Hypotheses and Possible Conclusions

