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Abstract

3D hand pose estimation from monocular RGB is a challenging problem due to
significantly varying environmental conditions such as lighting or variation in
subject appearances. One way to improve performance across board is to introduce
more data. However, acquiring 3D annotated data for hands is a laborious task, as
it involves heavy multi-camera set up leading to lab-like training data which does
not generalize well. Alternatively, one could make use of unsupervised pre-training
in order to significantly increase the training data size one can train on. More
recently, contrastive learning has shown promising results on tasks such as image
classification. Yet, no study has been made on how it affects structured regression
problems such as hand pose estimation. We hypothesize that the contrastive
objective does not generalize easily to such downstream task due to its inherent
invariance property stemming from the and instead propose a relation objective,
promoting equivariance. Our goal is to perform extensive experiments to validate
our hypothesis.

1 Introduction

Given a monocular RGB image, estimating the location of hand joints is a challenging structured
regression problem. Amongst others, conditions that significantly contribute to the difficulty are large
diversity in backgrounds, lighting conditions and hand appearances, as well as self-occlusion.

One straightforward way of improving the performance of a learning-based model is to include more
training data. However, acquiring 3D labeled data is laborious and expensive as it requires large
lab-like setting whose data does not translate well to in-the-wild imagery [1,2]. The community has
been relying increasingly more on supplementary 2D annotated data to tackle this and demonstrated
that inclusion of this additional data leads to better prediction accuracy. For example, 3] showed that
one can outperform many supervised approaches by using weakly-supervised data more effectively
via appropriate priors. Although easier to acquire, 2D annotations do not come for free. To tackle
this, works exist [2] that use automatically generated 2D annotations with the help of OpenPose [4].
However, there is no guarantee that these poses are indeed correct and the accuracy one can achieve
with such an approach is bounded by the performance of the OpenPose model.

Alternatively, one could resort to using unlabeled data directly with the help of self-supervision.
Recently, approaches such as [5, |6] have shown that they are close to reaching parity or even
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outperform supervised baseline models with the help of contrastive learning on tasks such as image
classification. This raises an interesting question: Does the contrastive self-supervised learning
capability extend to structured regression tasks as well? We hypothesize that features learned during
contrastive-based training may not readily transfer to regression-based tasks, as the former results in
features being invariant to the respective transformations. However, structured regression-based task
require equivariant features. For example, given two images of the same hand, one being the rotated
form of the other, the keypoints predicted on one hand should be the rotated version of the other. Yet,
the objective function of contrastive learning encourages the features of both images to lie as closely
as possible from one another, possibly inhibiting performance.

To tackle this, we propose a relative loss where the relative transformation from one image to the other
is predicted. Our assumption is that this novel task pushes the model to learn a representation that is
equivariant to the transformations applied. Coming back to our previous example of the two rotated
hand poses, the relative loss requires the model to be able to predict the relative rotation between
both the images. We hypothesize that doing so results in equivariant features, as the representation
learned needs to be informative to infer the the applied transformation.

In this paper, we propose to explore self-supervised learning approaches for hand pose estimation
by analyzing the currently prevalent method of contrastive learning. Our goal is to validate the
hypothesis that the contrastive objective is not an effective way to leverage self-supervision and that
by forcing the model to learn equivariant features, we can improve the performance of hand pose
estimation approaches across the board. We want to compare our proposed loss with the original
contrastive learning objective on the downstream task of hand pose estimation

We envision that the knowledge gained through the thorough evaluation of self-supervised methods
in the context of structured regression problems will be valuable for communities such as hand and
body pose. In the interest of reproducibility and contributing to the research community, we will be
releasing the code and trained network model.

2 Related work

Self-supervised learning has gained interest in recent years as a form of unsupervised pre-training.
Generally these rely on solving a pretext task which is not of interest to the actual task at hand.
However, by solving the task, a good representation is learned as a by-product which can be used in
downstream tasks.

Such pretext tasks can take any form. The most recent include Contrastive Multiview Coding
(CMO) [7]], Contrastive Predictive Coding (CPC) [8]], simCLR [5]], MoCo [6], whereas earlier works
include [9} 10, [114 112} 13} 14} 15 [16]. Alternatively, adversarial losses [17] can also be utilized for
unsupervised representation learning [[18}[19].

Authors in [20] tackle self-supervision by learning geometrically stable pixel level descriptors across
a range of objects with probabilistic objective. Whereas in [21]] and [22], authors estimate geometric
features by predicting parameters for relative geometric transformation applied to the image and
[23]] estimates it by predicting one out of four angels used to rotate the input image. Differently,
we propose to use geometric as well as appearance transformations. Lastly, none of the mentioned
related work compares the contrastive with the pairwise relative loss formulation and does not report
results on tasks such as hand pose.

In this paper, we focus on contrastive learning for self-supervision. However to the best of our
knowledge, contrastive learning has not yet been applied to downstream tasks such as structured
regression problems like that of hand pose estimation. One reasons for this could be that the resulting
features may be invariant to the respective transformations, instead of equivariant. Our goal is to
validate this hypothesis.

3 Methodology

Here we briefly recap the original contrastive formulation as was proposed by [5] and our proposed
relative objective.
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Figure 1: The pretraining phase of contrastive (left) and relative (right) models with fine tuning for hand pose
estimation (bottom right). In the contrastive model, features generated by the encoder are passed through an
MLP projection head to generate the projections on which the contrastive loss (Eq. [I) is computed. In the
relative framework, the features generated by the encoder for a pair of transformed images are concatenated and
passed through separate MLP heads to regress the relative transformation parameters. The relative loss is then
computed on these predicted relative parameters using Eq. [5] After the pretext training phase, the encoders are
frozen and the features generated from these encoders are then used to finetune a linear layer. The performance
of the linear layer allows us to quantify the representation power of the features learned.

3.1 Recap on contrastive learning

We show an overview of the contrastive framework in Fig. [I] left. Contrastive learning enables
a neural network f to learn features in an unsupervised manner by encouraging similar looking
images to lie close in feature space. As such, it creates similar looking pairs of images by applying
transformations ¢; : R™ — R"™ on a source image x € R" and optimizing a neural networks weights
to output similar features f(¢;(x)) = h;. These features are projected into a latent space g(h;) = z;
via a projection head g, on which the contrastive loss is applied to. To use the trained network f on a
downstream task, the projection head is discarded and a linear classifier is trained on the features h.

Z log exp(sim(z;,2z;)/T)

Z#k exp sim((z;,zg)/7)

(D

4,3,17]
Where sim(u,v) = u’v/||ul|2||v||2 computes a similarity and 7 is a temperature parameter. Al-
though impressive performance was achieved via this method, it is unclear how well these translate to
structured regression problems. Although [3] report that they were capable of predicting the rotation
angle with 67.6% accuracy, there are still issues: 1) It is unclear how the contrastive representation
affects the structured regression-based downstream tasks 2) The classification was done by predicting
an angle out of four. We hypothesise that there is more potential performance to be gained by
reformulating the contrastive task to a relative one.

3.2 Proposal

Instead of contrasting an image pair, we propose to predict their relative transformations. Concretely,
given a family of parameterized transformations 7 (e.g rotations), two randomly sampled parameters
0,0, (e.g rotation angles), we first compute the transformed sample pair via x; = t(x; 0;), where
t € T, before passing it into the network f to obtain their respective features h;. These are fed into a
transformation-specific projection head g; to predict their relative transformation 6;; = 6; — 0;. As
such, the objective changes from contrastive to relative. Hence, we reformulate Eq. |I|]t0 following for
one augmentation:

L, = Z |10i; — g¢(hy, hy)|| 2

1,5,17]
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Figure 2: Example of transformations used in this paper. Samples taken from FreiHAND [1].

In presence of |7'| number of augmentations we minimize the loss described in Eq. [3] where the loss
from each augmentation ¢ € 7T is scaled by a trainable parameter o [24]).

L= (Ly/ox +logox) 3)
keT

As each task family ¢ € T is different, each g, will be an independent network, but share the features
h produced by the network f. Our hypothesis is that by predicting relative transformation parameters,
the features learned will be equivariant to these transformations. This can be helpful for structured
regression task where transformation of input also transforms the keypoints.

This intuition stems from the following. Given x, we produce two samples x; and X» via x; = ¢(x; 6;).
As such, our proposed objective is ||f2; — gi(ha, hy)||2, where 027 = 05 — 6 is the target label.
Transforming a new sample x5 via 03 = 0 + A6 results in the new target label:

931293—91202+A0—01:021—|—A0. 4)

Hence the target changes in accordance to the change in parameters. We postulate that this induces
equivariance in the features h.

4 Experimental protocol

In order to provide fair comparison of our proposal with the contrastive loss, we will closely follow
the experimental protocol outlined in [5]]. The goal of the experiment section is to first verify which
transformation benefits from which self-supervised loss. Next, we want to identify which composition
results in the most beneficial feature representation. Lastly, we explore cross-dataset generalization
and compare with fully supervised methods.

4.1 Protocol

We briefly describe the dataset and transformations used, metrics reported and the setting assumed
for all experiments.

Datasets. We will benchmark our performance on two hand pose dataset. The first is FreitHAND
(FH) [[I]] which contains 32560 samples of single hand pose with green screen backgrounds. Using
synthetic background imagery, these are extended to 130k samples. The second is the InterHands2.6M
(IH) dataset, of which we focus on the single-hand split which contains 688% samples.

Transformations. Following [3]], we investigate the following transformations: crop, cutout, color
jitter, sobel, noise, blur and rotate. A sample of these can be seen in figure 2] Due to chirality in
hands, crop and flip is not used as an augmentation, instead we include random 2D translation of
the hand as seen in figure 2c] All the images are pre-processed by cropping the hand and resizing it
to 128 x 128 RGB image. Images in Fig. 2aare cropped from a larger image to isolate the hand,
similar to [3].



In our proposed relative objective we investigate translation, color jitter and rotation as they have
meaningful parameters that can be regressed. The translation parameters are (x, y) coordinates of
crop box center. Rotation is characterized by an angle 6, around which the image is rotated. Color
jitter is characterized by h, s, («, ) parameters which change hue, saturation and value of the image
pixels respectively. Augmentations like cutout and sobel filter are not included in the prediction since
their parameters are trivial to regress. Relative augmentation parameters of gaussian blur, noise and
cutout are ambiguous to predict, therefore are not included neither for our propose relative objective.
We emphasize here that the images are still augmented with these augmentation, but we do not
estimate their relative parameters.

Metrics. We report the mean per joint error (MPJE), as well as median on the downstream task
of hand pose estimation. More specifically, given the self-supervised pre-trained network f, we
follow the linear evaluation protocol [10} 8} 25 26]], where we train a linear layer on top of the frozen
pre-trained network to regress the 2.5D hand pose representation. This allows us the quantify the
feature representation learned in our proposed pretext task.

Setting. Following [27], we use a ResNet-18 [28] backbone network to facilitate training with bigger
batch sizes as it was reported to improve performance [5,16]. We use a 2-layer MLP projection head
and a 128-dimensional latent space. All models are trained using the ADAM optimizer. Inspired
by [5], the learning rate is scheduled using LARS [29] with an initial warmup phase to stabilize
training for large batches. The learning rate is scaled using square root of the batch size ny;, i.e.
Ir = 0.0001 x y/nps. For the downstream task of hand pose estimation, we discard the projection
head and replace it with a linear layer. The optimal parameters are chosen using random grid search.
For Sec. £.5] we change the backbone network to that of [30], but keep the training scheme the same.

4.2 Data augmentation specific objective function

Before we attempt to investigate the ideal series of transformations, we need to answer a question:
Given our downstream task of regression, will all transformation yield a boost with our proposed
relative objective? Could certain tasks pertain to the contrastive loss as opposed to the regressive
loss? For example, given the color augmentation where the color channels are augmented, it
would perhaps be more beneficial to require the feature representation to be invariant as opposed
to equivariant. In order to answer this question, we first perform an initial ablative study to inspect
which transformation benefits from a relative objective as opposed to a contrastive one. To this
end, we report the downstream task performance for each individual transformation, using either the
contrastive or relative loss.

4.3 Data augmentation compositions

As was highlighted in [3]], the composition of transformation operations is crucial to the final
performance achieved in the downstream task. Since the downstream task here is regression, it is not
clear if the same combination of transformations reported to be superior in [5]] for classification will
still remain as such in our downstream task. Therefore it is vital to determine which combination
of transformations perform the best. To this end, we perform an exhaustive search. For each
augmentation, we first pick the best performing pretext objective function, as determined in Sec.
[@.2] Then, we inspect all possible combinations of augmentations and determine which composition
performs best, based on the downstream task.

4.4 Cross-dataset generalization

Generalization is an important concept in any deep learning network. One simple way to cross the
domain gap is to train on data of the target domain. However, often fully labeled data is only available
in constrained lab environments. In this section, we want to explore our effectively self-supervised
learning can be used to cross the domain gap. To this end, we perform self-supervised pre-training
on IH and FH, but fine-tune the last linear layer only on FH. The final evaluation is done on IH to
quantify if a reasonable improvement can be gained. In order to have a comparison, we train a fully
supervised model solely on FH and compare the two results.



4.5

Comparison with supervised model

Given the best performing self-supervised objective and augmentation composition, we compare the
performance against the current state-of-the-art hand pose estimator [30]. For this we replace the
ResNet-18 encoder used in previous experiments with the hourglass model used in [30]]. During the
self-supervision phase, the 2D backbone network output is vectorized and passed through a non-linear
projection layer, like in the prior experiments. During the downstream task training, we train the
frozen network like that of [30]. The goal of this section is investigate how state-of-the-art models
perform in the context of self-supervision.
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