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Abstract

In Reinforcement Learning (RL), changes in the context often cause a distributional
change in the observations of the environment, requiring the agent to adapt to this
change. For example, when a new user interacts with a system, the system has to
adapt to the needs of the user, which might differ based on the user’s characteristics
that are often not observable. In this Contextual Reinforcement Learning (CRL)
setting, the agent has to not only recognise and adapt to a context, but also remember
previous ones. However, often in CRL the context is unknown, hence a supervised
approach for learning to predict the context is not feasible. In this paper, we
introduce Context-Adaptive Reinforcement Learning Agent (CARLA), that is
capable of learning context variables in an unsupervised manner, and can adapt
the policy to the current context. We provide a hypothesis based on the generative
process that explains how the context variable relates to the states and observations
of an environment. Further, we propose an experimental protocol to test and
validate our hypothesis; and compare the performance of the proposed approach
with other methods in a CRL environment.

1 Introduction

In Reinforcement Learning, an agent interacts with an environment through receiving observations,
executing actions, and receiving rewards. The goal of the agent is to maximise the cumulative reward
that is defined based on the task at hand. In some scenarios however, the behaviour of the environment
as well as the distribution of the observations can change over time. Under certain conditions, the
change in the observation distribution is caused by some variability that changes the context of the
environment. Therefore, a change in context affects the distribution of the environment’s observations.
As such changes may occur numerous times, not only does the agent have to adapt to the new contexts,
but it also has to remember the previous ones. This problem is known as Contextual Reinforcement
Learning (CRL).

As an example, consider a setting where users interact with a website, and the goal of the website
is to adapt to the user’s needs, which might change depending on the current user. However, the
behaviour of the user — the environment — is actually affected by some unobserved parameters such
as age and gender. If the goal of the agent — the website — is to adapt to the needs of the user, it is
often helpful to be able to infer the user’s characteristics and adapt to them. Another example is a
robot that sees the world through a camera, where the time of the day (day/night) or the surrounding
location can affect how the robot perceives its environment. Hence, it is crucial that an agent can
detect a context, and be able to adapt to it.
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Several approaches have been proposed to address this problem. For example, models that can adapt
to the changes of the environment by having better exploration strategies [6}[16]], have been used to
tackle environments with changing dynamics. As the context changes, the exploitation of the current
policy is no longer as effective, and the agent’s previous policy will no longer be suitable to tackle
the changes in the environment. Hence, the agent needs to explore new observations, in order to
accumulate more reward. Another approach to adapt to new contexts, is to use options in a hierarchical
reinforcement setting, where a meta-policy switches between a set of available policies [[L}15]. In [7],
Hallak et al. define a Contextual Markov Decision Process (CMDP), as a constrained Partially
Observable Markov Decision Process (POMDP), where each context is parameterised as an MDP. In
this setting, they propose a solution to tackle CRL assuming a fixed observation space over different
contexts, and the agent picking a suitable policy, given the available context. In contrast to the
Contextual MDPs as a special case of POMDPs, Jiang et al. [10] propose a generalisation of MDPs
and POMDPs known as Contextual Decision Processes (CDPs), where there is a general context
space that the observations are drawn from. Although this formulation is quite general, this work
focuses on problems with low Bellman ranks, which corresponds to MDPs with low-rank transition
matrix, or small observation space.

In this paper, we provide a definition for Contextual Reinforcement Learning that assumes changing
the context, affects the distribution of the states of the environment, resulting in a change in the
distribution of the observations. Our definition is motivated by the generative process in a contextual
world, where the context variables affect the states of the generative model of the world. Given this
definition, we provide a solution using unsupervised learning of the context variable that allows for a
better adaptation of the policy based on the context. More generally, in this work we are trying to
answer the following questions:

1. Does knowing the context variable help the policy to better adapt to different contexts?
2. What characteristics does a predictive model need to predict context from observations?

3. Can our learnt context variable help the policy to better adapt to different contexts?

In order to answer these questions, we conduct a set of experiments to test the performance of an agent
with and without knowing the context variable. Additionally, we conduct experiments to investigate
whether disentanglement is actually helpful for estimating the context. Further, using our proposed
approach, we estimate the context variable in an unsupervised manner, and compare the performance
of agents with and without this estimated variable.

2 Related work

Contextual RL: Contextual settings have been mainly explored in Multi-armed bandits [13]]. Hallak
et al. [[7] propose contextual MDPs (CMDPs), extending the standard MDP formulation with multiple
contexts that change the underlying dynamics. They introduce an algorithm that is able to detect
different contexts and optimize the CMDP. However, their work is focused on low-dimensional
observation-spaces and, only a small number of fixed contexts is considered. In contrast, our work
is proposed for high-dimensional observation-space such as images, and can deal with a variable
number of contexts as it incorporates a continuous multivariate context variable. Another work
formulates contextual decision processes as a generalization of MDPs and POMDPs [10], where
the observations themselves or their history, respectively, form the context. Our approach differs
from this formulation by explicitly distinguishing between context and observations, and having a
generative view on the observations based on states that depend on a context.

Eysenbach et al. [5] propose to use mutual information between the context and the observations as
a learning signal, and the entropy of the policy over different contexts as a regularisation term to
improve exploration, and better adapt to the change of context. This approach assumes the context
variable is known to the policy. Achiam et al. [1]] propose VALOR and use a variational auto-encoder
(VAE) that first encodes context to trajectory via policy, and subsequently decodes the trajectory
back to the initial context using a probabilistic recurrent decoder that assigns high probabilities to
trajectories that are unique to a context. Their approach also assumes that the context variable is
known, and is used as a supervised signal to train the decoder. A different model-based approach
is explained in [16]]. An ensemble of dynamic models is trained to predict next observation given
the current observation and action. The variance over the output of this ensemble is used as intrinsic



reward to train the policy. This approach improves the exploration, which is helpful in contextual
settings as the agent better adapts to new contexts.

Representation Learning for RL: Recently, several approaches to learn better representations for
RL have been proposed. Higgins et al. [9]] propose DARLA following a two stage learning approach.
First, an agent learns disentangled state representations using 3-VAEs [§]] from a high dimensional
observation space. Second, based on the previously learned disentangled state representation, the
agent has to learn a policy to solve a given task. In contrast to our work, the learned disentangled state
representations are not explicitly used to infer different contexts, and the policy is directly learned
using the disentangled features, while as we will explain, in our work the disentanglement is only
used for learning the context variable, and the agent can learn an unconstrained representation from
the observations, in addition to the context variable. Similarly, Stooke et al. [[18] propose to decouple
representation learning from the RL task. By applying image augmentation [12] and a contrastive loss
for learning state representations from raw pixel-observations, they are able to outperform end-to-end
trained RL agents on various environments. Such a contrastive learning approach was also applied
in [17].

3 Problem definition

In this section, we provide a generative view to Contextual Reinforcement Learning (CRL), and
detail the relation between context variables and the states of the environment. Based on this view,
we provide a solution for CRL that can automatically recognise the change in the states of the
environment, accordingly predict the new context, and adapt the policy to the new context.

3.1 Contextual Reinforcement Learning

A Partially Observable Markov Decision Process (POMDP) is defined as a tuple (S, .4, P, R, 2, O),
with S being the state space, A the action space, P the transition probabilities, and R the reward
function. In this setting, the agent does not directly observe the true states of the environment, but
receives observation o € ). This observation is generated from the underlying system state s and the
received action a, according to the probability distribution o ~ O(o | s, a).

In this work we consider finite-horizon episodic Contextual POMDPs (CPOMDPs). At the beginning
of each episode an agent will encounter a specific POMDP depending on a randomly sampled context
¢ € C, which we assume to not change over time within an episode. While for regular POMDPs, the
goal of an RL agent is to learn a policy 7(a | 0) that maximizes the expected cumulative reward, in
CPOMDPs the agent has to learn a policy 7(a | o, ¢) that further depends on a context c.

3.2 A Generative View on Contextual Reinforcement Learning

Generative Process: We assume a generative process is in place such that everything within the
environment is happening in a two-step generative process. First, a multivariate latent random variable
z is sampled from a distribution P(z), where z corresponds to semantically meaningful factors of
variation of the observations (e.g, shape, colour of the objects; density of objects). Second, the
observation z is sampled from a conditional distribution P(x | z). We assume that the observation
space has higher dimensionality than the semantic space, hence, the data space can be explained with
substantially lower dimensional and semantically meaningful latent variable z, and is mapped to the
high dimensional observation space x.

Generative Process in Contextual Reinforcement Learning: In Contextual Reinforcement Learn-
ing, we assume that the environment E, (04, a;) generates the next observation o1, given the current
observation o; and action ay, i.e., 0441 = E. (0, a;), with z being a variable controlling its statics
(e.g, shape or size of objects). In our generative view, the observations of an episode are generated
from a generative model E. (o¢, a;) in 3 steps as follows. In the first step, a multivariate latent random
variable ¢ € C is sampled from a distribution P(c), where ¢ corresponds to a context. In the second
step, a multivariate latent random variable z is sampled from a conditional distribution P(z | ¢), where
z corresponds to the state of the environment that controls the statics, defining how the environment
generates the next observation, given he current observation and action during an episode. In the third
step, the next observation o441 is generated from the environment’s generative model E. (o, a;).



4 Proposed Approach

In this section, we propose Context-Adaptive Reinforcement Learning Agent (CARLA), which is
capable of adapting to new contexts in an environment, without any supervision or knowledge about
the available contexts.

CARLA consists of two parallel networks: a context network, and a representation network. The
context network aims at learning the context variable, while the representation network is aiming
at learning a suitable representation from the environment. The output of these two networks are
then further feed into the policy network, where an adaptive policy is formed given the environment
variables and the context variable. The policy network then adapts the current policy, based on the
context variable. A block-diagram of CARLA is provided in Figure [T] (left).

As detailed in Section [3.2] our assumption in the generative process is that the context variables
define the statics of the environment, which in turn defines the distribution of the observations within
an episode. The aim of the context network is to reverse this process and estimate the context
vector given the observations. As shown in Figure [T](right), it contains two main modules: a feature
disentanglement module and a context learning module. The context network first estimates the the
environment’s statics, and further uses it to learn the context variable. This context factor is then feed
to the policy network, in order to adapt the policy to the current context.

The feature disentanglement module is an encoder part of a Variational Autoencoder (VAE) [[11]],
which is trained with annealing the Kullback Leibler (KL) Divergence term of the Evidence Lower
Bound (ELBO). The VAE is trained using random samples drawn from an experience replay
buffer [14]. The context learning module is trained online given the observations received in
each episode, along with the representation network and the policy network by optimizing the RL
objective. This module learns upon the disentangled states of the environment, extracted using the
feature disentanglement module explained above.
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Figure 1: left) Block diagram of CARLA. right) Block diagram of the Context Network. Hidden
variables are shown with circles, while processing units are shown with squares.
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The graphical models for various approaches in CRL is provided in Figure[2] As can be seen, our
model has a different graphical model than DARLA [9] and VALOR [1]]. The main idea in CARLA,
is to learn disentangled factors from the environment using pre-selected training data, in a similar
manner to DARLA. In contrast, CARLA uses a recurrent context network that can build the sequential
relationship for the disentangled factors, to predict the context variable, which might be useful in
a partially-observable setting to infer the dynamics. Further, CARLA allows the agent to learn an
unconstrained representation from the environment during training the agent via interacting with
the environment. Although VALOR uses a sequential decoder, it differs from CARLA in various
ways. For example VALOR assumes an observed context, in contrast to CARLA which estimates the
context variable using a sequence of disentangled factors.

5 Experimental Protocol

In this section, we detail our experimental setup and evaluation strategy, in order to demonstrate the
effectiveness of the proposed approach in tackling CRL. In our evaluation, we are testing several
hypotheses to answer the following questions:
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Figure 2: Comparison of the graphical models in different approaches. The solid lines represent
generation, and the dashed line represent inference. Gray circles represent observed variables, while
white circles represent hidden variables.

Does knowing the context help the performance of the agent?

To investigate this, we conduct an experiment testing whether adding a context variable as an
additional input to the policy network helps the policy to better adapt to context changes. For
evaluation, we will compare the performance in terms of the cumulative reward of a baseline agent
that does not use the context information, to an agent that has access to this additional information.

What characteristics does a predictive model need to predict context from observations?

In this experiment, we evaluate how well a context can be learned from the observations. Our goal is
to determine on the one hand which representations capture the most information about the context
in an unsupervised manner and on the other hand which modelling technique (feed-forward vs.
sequential) is more suitable to learn the context variable. To this end, we investigate whether feature
disentanglement helps in learning the context, by training unsupervised VAEs. We compare a vanilla
VAE [L1] that does not perform feature disentanglement, to an annealed VAE [2]] that incorporates it.
Subsequently, given the features extracted by each of the VAEs, we compare a feed-forward classifier
to a recurrent one, for learning the context from a single, or a sequence of representations, extracted
by the VAEs from observations, respectively. A train-test split on the observations and their respective
context label is used to evaluate the generalisation of the context classifiers.

Can our learnt context variable help the policy to better adapt to different contexts?

Finally, to test our full setup, we compare CARLA with the context variable being jointly trained
using the RL objective, against two baseline agents in terms of the accumulated reward. The first
agent does not have the additional context information, which basically is CARLA without the context
network. For the second agent, we remove the representation network and the context learning from
CARLA leaving only the feature disentanglement, which is thus similar to DARLA.

For all our experiments, we use a modified dynamic obstacle gridworld environment [3| 4] as follows.
The task of an agent will be to reach a goal position, while collecting and avoiding certain objects.
The agent receives a reward of +1 and -1 for good and bad objects, respectively. Whether an object is
good or bad will be based on a certain context, e.g., a specific configuration of differently colored
and shaped objects that allow for a clear distinction between contexts. We consider a fully and a
partially observable variant of this environment to properly compare feed-forward and recurrent
context learning, by either showing the whole grid or a subset. For the VAEs, we use the architecture
from [9]. However, as shown in [2], annealing the KL term provides a better disentanglement than the
B-VAE, which was used in [9]]. Hence, we use the annealing technique proposed in [2] for training
the VAE. Similar to [9]], we use an experience replay buffer to draw i.i.d. samples for optimizing the
VAE objective. For collecting the observations we follow two different strategies. First, we will store
observations that are received by the agent during training in an online fashion. Second, as this might
cause the VAE to overfit to its recent experience and not generalize across all possible observations,
we will use a different agent to collect the observations that simply avoids all objects and moves
around in the world, similar to what is proposed in [9]]. To train the RL agents, we use vanilla policy
gradient as well as the hyperparameters reported in [1]. For the context network, we compare two
architectures: a 1-layer LSTM (64 neurons), and a 1-layer MLP (64 neurons), and the policy network
is always a 2-layer MLP (64 neurons). For all feed-forward hidden layers with non-linearities, we
apply ReLU activation [[15].
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