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Abstract

We propose a new framework for object detection that guides the model to explic-
itly reason about translation and rotation invariant object keypoints to boost model
robustness. The model first predicts keypoints for each object in the image and then
derives bounding-box predictions from the keypoints. While object classification
and box regression are supervised, keypoints are learned through self-supervision
by comparing keypoints predicted for each image with those for its affine transfor-
mations. Thus, the framework does not require additional annotations and can be
trained on standard object detection datasets. The proposed model is designed to be
anchor-free, proposal-free, and single-stage in order to avoid associated computa-
tional overhead and hyperparameter tuning. Furthermore, the generated keypoints
allow for inferring close-fit rotated bounding boxes and coarse segmentation for
free. We propose to evaluate our model on the standard PASCAL VOC and MS
COCO datasets and metrics along with new specialized experiments designed for
assessing robustness to translation and rotation. Finally, the segmentation utility of
generated keypoints would be evaluated on the MS COCO dataset.

1 Introduction

Object detection is formulated as the localization and classification of objects in an image, where the
former is typically encoded as rectangular bounding boxes that contain object instances. Intuitively,
this task is a core component of automated visual scene understanding, allowing for images to be
parsed in terms of objects. As such, the field has amassed extensive research interest in the last couple
of decades [1], with large improvements in performance.

Existing detectors can be categorized into two-stage and one-stage models, where the former first
generates region proposals in an image followed by precise localization, while the latter directly
predicts detections across the entire image. Both model families commonly comprise a backbone
network, e.g., ResNet [2] pretrained on ImageNet [3], which generates convolutional features from the
image, optionally followed by a variant of Feature Pyramid Networks [4] for combining information
from different depths of the backbone. These features are then used to predict the object classes and
bounding boxes through sibling head modules. A majority of detectors employ anchor or default
boxes of various sizes and shapes with bounding box predictions made in terms of adjustments
to these anchors. However, methods for anchor-free detection have been proposed recently [5, 6],
which vastly reduce hyperparameters related to anchors. Recent works [1] in object detection have
proposed improvements to all the aforementioned components, training schemes including better
losses, sampling strategies, etc., and new approaches for corner-points-based anchor-free detection.

In this work, we propose a method for improving the robustness of detectors by training them to
explicitly focus on object keypoints that are invariant to affine transformations of the image and
objects contained in them. Figure 1 describes the high-level approach. Specifically, we propose
a framework for training one-stage anchor-free and proposal-free detectors that treats each pixel
as an object center and produces corresponding object keypoints and classes at each scale of the
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Figure 1: The proposed keypoints-aware object detection framework. The model treats each location
on the image as an object center and predicts (1) object class, (2) keypoints, and (3) a centerness
score. Bounding boxes are then computed through softmin and softmax operations on the keypoints.
Classification, box regression, and centerness are learned in the standard supervised learning setup.
Keypoints, on the other hand, are learned through self-supervision by comparing keypoints generated
for images and their affine-transformed variants. Best viewed digitally and zoomed in.

backbone network. The conventional bounding boxes can then be derived from the keypoints through
straightforward maxima and minima operations.

The object classification and bounding box regression tasks are trained in the standard supervised
fashion, along with a centerness loss [5] to avoid predictions far from object centers. In contrast, to
avoid dependence on ground-truth keypoint annotations, we learn their prediction in a self-supervised
manner. We first predict keypoints for the original image and its affine transformation. We then
transform keypoints of the transformed image to coordinates on the original image by applying
the inverse transformation on them. The self-supervised loss then becomes the distance between
the keypoints of the original image and those from the inverse transformation. Besides the regular
bounding box localization, the proposed framework provides close-fit rotated bounding boxes and
coarse segmentation masks for free, as illustrated in Figure 2. These can be achieved with simple
computational geometery techniques and can benefit downstream applications.

We propose to evaluate the proposed framework on the standard PASCAL VOC [7] and MS COCO [8]
benchmark datasets. Furthermore, we propose to create new evaluation-only versions of these datasets
by applying various affine transformations to their images in order to compare the robustness of our
model with the state-of-the-art methods in terms of invariance to the said transformations. Finally, we
propose to additionally evaluate the quality of the coarse segmentations generated from the keypoints
on the MS COCO dataset in order to quantify their downstream utility.

2 Related Work

A number of works [9–13] have been proposed recently that regress bounding box corner locations
and object centers directly instead of relying on anchors. Corner proposal [14] has also been employed
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Figure 2: Auxiliary benefits of the proposed model. The model outputs keypoints and rectangular
bounding boxes along with the class labels. The keypoints can then be used to calculate close-fit
rotated bounding boxes and coarse segmentation masks using computational geometry algorithms.

as a replacement for region proposal in two-stage object detectors. These methods are termed as
keypoint-based object detectors, where keypoints refer to the coordinates of box corners and centers.
In contrast, our work generates object keypoints that lie on the spatial regions spanned by the objects
instead of bounding box corners, which often lie outside object regions. Furthermore, keypoints in
our method are learned in a self-supervised fashion without requiring additional annotations.

Yang et al. [15] propose a detection method that aggregates information from keypoints in images
through deformable convolutions with learned offsets. In contrast, our method predicts keypoints
as model outputs for each object in the image. Kulkarni et al. [16] also predict object keypoints in
an unsupervised way but their method is designed for tracking objects in videos, requiring pairs of
frames as inputs. Jakab et al. [17] predict keypoints by reconstructing a target image from a source
image and keypoints extracted from the target through a bottleneck procedure. Our method, instead,
explicitly predicts keypoints for each object in the image.

Anchor-points detectors such as [18] predict anchor points on the image and then bounding boxes
as vertical and horizontal offsets from the anchor locations. Wei et al. [19] design object-specific
anchors as sets of points and make predictions relative to these point-set anchors. Our work, on
the other hand, is similar in spirit to [5] and treats each location as a potential object center for
making detection predictions. The self-supervised keypoint prediction in our work also falls under
the umbrella of consistency-based learning through data augmentation [20].

3 Keypoints-aware Model for Object Detection

In the following sections, we describe (1) the complete model architecture, (2) self-supervised training
for learning to predict object keypoints, and (3) computation of close-fit rotated bounding boxes and
coarse segmentation masks as auxiliary post hoc outputs. In the rest of the text, we denote the set of
predicted keypoints as P and its cardinality as K.

3.1 Model Architecture

The proposed method is compatible with any existing detection framework, but we design it like [5]
as a one-stage proposal-free and anchor-free model for validating its effectiveness. These attributes of
the model significantly reduce [5] computational overhead and sensitive hyperparameters. The model
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starts with a backbone convolutional feature extractor, for which we experiment with two commonly
used alternatives [2] – ResNet-50 and ResNet-101, pretrained on ImageNet [3]. The features are then
passed through a standard Feature Pyramid Network (FPN) [4] to combine features from various
depths of the backbone such that both low-level and high-level image features are utilized at each
scale of prediction. Additional convolutional and upsampling operations are applied to ensure that all
features have the same spatial dimensions as the original image and a fixed number of channels.

Objects of different sizes are detected at different feature levels, as standard in one-stage detectors. In
this work, we follow the approach of [5] to treat each location on a feature map as an object center
and make predictions relative to center locations. Hence, for each feature level, the FPN outputs are
then fed to three sibling modules that make predictions for each location – (1) object-class prediction,
(2) keypoints prediction as 2 ×K channels representing (∆x,∆y) distances to keypoints at each
location, and (3) centerness prediction, which prevents predicted detections from being far from the
center location. Object bounding boxes are then derived from the keypoints as top-right and bottom-
left coordinates through softmax and softmin operations, which facilitates gradient flow through
all keypoints during backpropagation. The training losses for classification, box regression, and
centerness are Focal loss [21] (LFoc), IoU loss [22] (LIoU), and Centerness loss [5] (LCen), respectively.
We generate prediction targets at different scales, limiting output ranges at each scale, and resolving
overlapping ground-truth boxes by picking the one with the minimal area, following [5].

3.2 Self-supervised Training for Keypoint Predictions

In order to avoid dependence on ground-truth annotations for object-keypoints, we train the model to
predict rotation and translation invariant keypoints in a self-supervised manner. Specifically, given an
image I , we first generate its variant IT by applying an affine transformation IT = TI . Next, we
generate keypoints (at each location and each feature level) P and PT for I and IT , respectively,
using the method described in Section 3.1. The keypoints PT are then transformed back to the space
of I by applying the inverse transformation P ′T = T−1PT . Intuitively, P and P ′T should match for
the keypoints to be transformation invariant, and the smooth L1 loss (LSL1) between them can be
used as the self-supervised loss. However, P and P ′T represent sets of keypoints with no inherent
ordering. We employ Hungarian matching [23] (HM) to find the best alignment between the two sets
and minimize the distances between the matched points. Furthermore, T could throw parts of the
image out of frame and introduce empty space in the image frame. We mitigate corrupt losses from
such locations by computing a mask m and backpropagating gradients only from valid object-center
locations. Thus, the self-supervised keypoint-prediction loss LKey for each object-center location o
and at each scale s can be written as shown in Equation (1). The complete training loss is presented
in Equation (2), with β denoting the Lagrange multiplier for the new semi-supervised loss Lkey.
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L = LFoc + LIoU + LCen + βLKey (2)

We propose to further evaluate the model’s sensitivity to K through ablation studies. We plan
to determine good values of K in a data-driven manner by analyzing the number of vertices in
segmentation masks in benchmark datasets and devising heuristic functions based on the results.

3.3 Auxiliary Derived Outputs

The proposed framework provides close-fit rotated bounding boxes and coarse segmentation masks
without explicitly training for them with supervision. In order to generate close-fit rotated bounding
boxes, we employ the Rotating Calipers method [24, 25] for computing the oriented minimum
bounding box of a point-set, and apply it to the predicted object-keypoints. Generating segmentation
masks, on the other hand, involves a simple calculation of the boundary of the predicted keypoints.

4 Experimental Evaluation

We evaluate the performance gains achieved from the proposed self-supervised keypoints-aware
training and prediction strategy quantitatively on (1) object detection efficacy and (2) invariance to
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translations and rotations. Experiment (2) would additionally quantify the improvements in invariance
to affine transformations of objects in images due to our keypoints-based approach. Performance
is compared with the standard FCOS object detector as the baseline. Furthermore, we provide
qualitative results of the auxiliary close-fit rotated bounding boxes and coarse segmentation masks.
These predictions are “free of cost” and are not expected to outperform models trained with rotated
box and pixel-level annotations, respectively. Finally, we perform ablation studies for evaluating gains
due to the proposed Hungarian matching, and the model’s sensitivity to the number of keypoints.

Object detection efficacy is benchmarked on the standard PASCAL VOC [7] (training on VOC 07+12
training set; testing on VOC 07 validation set) and MS COCO [8] (training on COCO 2017 training
set; testing on COCO 2017 validation set) datasets using the standard mean average precision (mAP)
metrics defined for these datasets. In order to evaluate translation and rotation invariance, we generate
two new datasets from both VOC and COCO test sets (total four) – one for translation and another
for rotation. In case of the former, we randomly shift the image along X and Y axes, while in the
latter case, we rotate each image by a random angle in the range [−30◦, 30◦]. The resulting images
are cropped to remove empty-space artifacts from the transformations. mAP metrics are reported
separately for each case. The goal here is to achieve high mAP scores for transformed images as
indicators of robustness and invariance.

5 Conclusion

We have proposed a new keypoints-aware model for robust object detection invariant to affine
transformations. The model predicts keypoints for each object, which are then used to compute
the bounding boxes using simple minima and maxima operations. We have described the training
process wherein box regression, classification and centerness are trained in a supervised manner while
keypoints are learned through self-supervision by comparing keypoints generated for images and
their affine-transformed variants. The proposed model also provides close-fit rotated bounding boxes
and coarse segmentation masks for free. We have further proposed the experiment setup involving not
only the standard object detection benchmarking but also quantification of invariance to translations
and rotations, and evaluation of the utility of generated segmentation masks.
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