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Abstract

In this work we address the problem of landmark local-
ization in 3D point clouds by extending the convolutional
pose machine (CPM) architecture to facilitate landmark lo-
calization in 3D point clouds. Making use of PointNet++,
we are able to construct an architecture that is invariant to
the ordering of an input point cloud. The sequential CPM
architecture facilitates allows initial heatmaps to be iter-
atively refined in a series of point convolutional stages to
yield robust landmark predictions. We propose to evalu-
ate our approach for 3D facial landmark localization on
benchmark face databases, BU-3DFE, BP4D-Spontaneous
and BP4D+. The robustness of the approach to the size of
the input point cloud will be assessed, and the contribution
of the CPM stages will be evaluated in an ablation study.

1. Introduction

With the recent advancements in 3D capture technolo-
gies, the availability of 3D data in the form of meshes and
point clouds has become ever more prevalent. With this, 3D
landmark localization has become an increasingly studied
topic, and has been applied in a diverse range of fields in-
cluding face verification, facial expression recognition, fa-
cial alignment and morphometric analysis.

Many 2D landmark localization approaches have ben-
efited from the use of heatmaps to accurately encode the
likelihood of a landmark occurring at a given location
[6, 11, 18]. The use of heatmaps has also been success-
fully applied to the prediction of 3D landmarks from 2D
images, both for the face [2, 19] and body [8, 10]. Many
of these make use of residual or stacked hourglass networks
to refine the predicted heatmaps and improve landmark lo-
calization accuracy. One such architecture is the convolu-
tional pose machine (CPM), a sequential heatmap predic-
tion framework that enables increasingly refined landmark
predictions and has been used to achieve state-of-the-art re-
sults in face and body landmark localization [6, 18].
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Figure 1. Overview: a) Initial point cloud, b) Predict heatmaps, c)
Landmark localization. Colour shown for visualization only.

Given the success of the approach in these domains, we
hypothesize that the extension of heatmaps, and CPMs in
particular, could lead to substantial gains for the prediction
of 3D landmarks from 3D point clouds. As methods for
processing unordered point clouds have improved substan-
tially in recent years [5, 13, 20, 22], this concept has become
increasingly feasible. We aim to make the following contri-
butions: a) extend the CPM architecture for landmark local-
ization in 3D point clouds, and b) quantitatively evaluate the
proposed approach via an ablation study and a comparison
to current state-of-the-art in 3D landmark localization.

2. Related Work
Many 3D approaches to landmark localization have ex-

ploited the strength of 2D techniques by rendering images
of a textured mesh from multiple viewpoints and project-
ing detected keypoints onto the 3D space of the mesh [1],
however these approaches can be sensitive to illumination,
pose and expression. Others have combined texture-based
information with spatial information by fitting an active ap-
pearance model (AAM) to intensity and depth maps of a
surface [7]. In [4] ensemble landmarking is used to coalesce
extracted features from texture, depth and height maps.

Approaches that consider only the geometric structure
have also been proposed. Wang et.al. [17], convert 3D data
to attribute maps such as intrinsic curvature, normals and
depth and use these to train a fused Convolutional Neural
Network (CNN). Sun et.al. made use of vertex-flow to cre-



ate an AAM for landmark tracking [16]. In [15], an archi-
tecture for 3D facial annotation based mesh shape is pro-
posed. Curvature analysis is used to detect fiducial points,
which are used to initialize the remaining landmarks via an
Active Normal Map (ANM), prior to a final iterative refine-
ment stage. This approach relies on handcrafted features
however, namely the concavity and the convexity of the eye
corners and nose tip respectively, it is not readily transfer-
able to other domains. A model-based approach is also used
in [3], where curvature about the landmarks is used to create
a shape index-based statistical shape model (SI-SSM).

In the context of point cloud processing, a number
of deep learning approaches that directly consume point
clouds have been proposed. The PointNet++ architecture
has demonstrated great success for classification and seg-
mentation of point clouds [14]. They propose point convo-
lutions, which are invariant to the ordering of input points,
and makes use of a sampling and grouping strategy for pool-
ing. PointNet [13] also been successfully applied to find
correspondences between sets of point clouds [5]. Other ap-
proaches for 3D feature detection in point clouds [20] and
voxels have also been proposed [22] for the purpose of 3D
scene alignment.

3. Methodology
A point cloud, P = [xT

1 , x
T
2 , ..., x

T
n ], is defined as a set

of n 3D points, xi = [xix, xiy, xiz]
T . The set of m, land-

marks, L, is similarly defined.
The heatmaps, h, are constructed by applying a Gaussian

peak at the ground truth landmark location. A 1D heat vec-
tor, h = [h1, h2, ..., hn]

T , is constructed for each of the m
landmarks, where hi ∈ R is the value associated with ver-
tex xi in the mesh based on its proximity to the landmark.
The set of all heatmaps is denoted as H .

3.1. Landmark Localization

The proposed architecture follows that of previous work
on CPMs [6, 18], which iteratively refine landmark predic-
tions in a series of successive convolutional stages. This
architecture is outlined in Figure 2. The feature extraction
block is implemented using PointNet++ [14]. The initial
set abstraction layers of the architecture perform grouping
and pooling, while feature propagation is facilitated by skip
link concatenations. For full details, refer to [14]. The out-
put layer of this block is modified to gives H0, the initial
heatmap estimates.

Three subsequent stages are used for refinement. Stage
1 takes H0 as input and outputs heatmap H1. Stage 2, s2,
and stage 3, s3, take the output of the previous stage con-
catenated with the output of the feature extraction block as
input, as shown in Eq. 1. To calculate the final landmark
predictions, the maximum three points in each hi are cho-
sen. The ith landmark is then calculated as the barycentre

of the three corresponding vertices.

s2(H0, H1) = H2

s3(H0, H2) = H3

(1)

The loss function minimized during training is the sum
of the mean squared error for the output heatmaps at each
of the three prediction stages, z

Loss =

m∑
i=1

∑
z∈1,2,3

‖hi(z)− h∗i (z)‖2 (2)

where h is the ideal heat map, and h∗ is the correspond-
ing prediction. The model is constructed with Pytorch [12],
uses a batch size of 8, and Adam optimization [9] with an
initial learning rate of 0.001. All meshes are normalized in
a pre-processing step. During training, the point clouds, and
their corresponding landmarks, are randomly rotated about
the x, y and z axes as a means of data augmentation.

4. Experimental Protocol
We propose to evaluate our approach on the BU-3DFE

[21], the BP4D-Spontaneous (BP4D-S) [23] and BP4d+
[24] databases. BU-3DFE contains the scans of 100 individ-
uals, while BP4D-S consists of 41 subjects. Both have pre-
viously been used to provide a benchmark for 3D landmark
localization. BP4D+ contains the scans of 140 individuals.
All databases include both male and female subjects from a
wide range of ethnicities, displaying a variety of emotions,
and are annotated with 83 facial landmarks.

Precision and absolute error will be used to evaluate the
proposed approach. Precision rate is the proportion of pre-
dicted landmarks within a specified range from the ground
truth landmarks, while absolute error refers to the Euclidean
distance between predicted landmark and the ground truth.

4.1. Ablation Study

The proposed architecture consists of three fully con-
volutional stages in which the landmark heatmaps are pre-
dicted and further refined. In this section we aim to quan-
tify the contribution of each of these stages via an ablation
study by evaluating the accuracy of the landmarks produced
by the heatmaps at each of the three stages.

4.2. Comparison with State-of-the-Art

The precision rate will be evaluated using the BU-3DFE
database, following the precedence in [7, 15]. 80 of the
100 individuals in the database will be randomly selected
to form the training set, while the remaining 20 individuals
will comprise the test set. The experiment will be repeated
5 times, with a different test set each time, so that each in-
dividual is assigned to the test set on one occasion. The
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Figure 2. Network architecture. PointNet++ architecture is used for initial feature extraction, followed by three point convolutional layers.
The numbers indicating the quantity of output layers in the convolutional stages. ⊕ signifies a concatenation operation.

mean precision and absolute error over all experiments will
be reported and compared to those of [3, 7, 15]

Accuracy on BP4D-S will be compared to [3, 16] us-
ing the mean square error (MSE) between ground truth and
predicted landmarks. The one-point spacing procedure out-
lined in the same paper will be used, where the one-point
spacing is defined as the distance between the closest pair
of points in the 3D scan (≈ 0.5mm).

4.3. Effect of Point Cloud Size

Finally, the performance of the model for a different in-
put sizes will be evaluated, for both landmark localization
accuracy and processing speed of a single point cloud.
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Abs. Err. (mm) Mean Precision (%)
Layer mean SD < 5mm < 10mm
1 5.18 4.58 60.09 91.83
2 4.78 4.19 63.96 93.89
3 4.73 4.26 63.77 93.78

Table 1. Effect of CPM layers on landmark prediction accuracy.

Abs. Err. (mm) Mean Precision (%)
mean SD < 5mm < 10mm

Ours 3.97 2.39 73.30 97.17
Fanelli [7] 4.22 2.99 72.51 95.80
Sun [15] 3.47 2.95 84.13 96.96

Table 2. Comparison on the BU-3DFE Database for the 14 key-
points outlined in [7].

Ours Cavanan [3] Sun [16]
MSE 5.64 9.6 2.54

Table 3. MSE for BU-3DFE. A unit error of 0.5 mm is used.

5. Results
5.1. Ablation Study

The results of the ablation study, which allow for the
contribution of each convolutional stage to be quantified,
are outlined in Table 5.1. Values were calculated for the
BU-3DFE dataset at a point density of 4096. The results
indicate that the refinement stages do allow for some im-
provement on the accuracy of landmark prediction. Beyond
the second stage, however, this improvement is minimal.

5.2. Comparison with State-of-the-Art

In lieu of evaluation on BP4D-S, all comparisons were
made with BU-3DFE. Again, 4096 points were used for
evaluation. For approximately 3% of cases, the network
failed to predict coherent landmarks, as shown in the exam-
ple in Figure 3. These cases were omitted from the analysis.

Table 5.2 compares our results with those of the 14 fidu-
cial landmarks specified in [7, 15]. The mean absolute error
and precision rate for each of these points in all test samples
are reported. Table 5.2 reports the unit MSE for the 83 land-
mark points as compared with the results of [3] and [16].
While our network does not top the best performing system
in either case, acceptable results are nonetheless achieved.

5.3. Effect of Point Cloud Size

Table 5.3 summarises the effect of point cloud density
on the accuracy of landmark predictions and the process-
ing speed for BU-3DFE and BP4D+. Predictably, as the
point cloud density decreased, so too did the landmark lo-
calisation accuracy. The exception to this is BP4D+ at 4096,

BU-3DFE BP4D+
Pts fps mean SD mean SD
4096 5.18 4.75 3.37 5.39 4.82
2048 13.07 4.99 3.09 4.24 2.57
1024 23.04 5.15 2.95 4.89 3.98
512 27.81 5.85 3.24 5.68 3.38

Table 4. Effect of point density on absolute error (mm) and pro-
cessing speed in frames per second (fps).

a) d)b) c)

Figure 3. Sample landmark predictions at 4096 points. Texture
and surface shown for visualisation purposes only. Predicted land-
marks are in blue, while ground truth are in green.

a) d)b) c)

Figure 4. Predicted landmarks for the same point cloud at different
point densities; a) 4096, b) 2048, c) 1024, and d) 512.

where the network appeared to fit poorly to the training data.
The failure rate remained consistent at all point densities.

The processing time for an input point cloud decreased
with the point density. At 4096 points per sample, the aver-
age processing time was observed to be 193.11 ms, giving
a frame rate of 5.18 fps. Compared with [3, 7, 15], which
achieve a approximately 3, 25 and 0.71 fps respectively, our
system network performs respectably in this area.

6. Conclusion
In this paper we have presented a method for landmark

localization in point clouds. The use of fully convolutional
refinement stages allowed for increased landmark localisa-
tion accuracy. The greater the number of points in the in-
put data, the more accurate the landmark predictions were
found to be. Although this approach does not improve upon
the state-of-the-art, respectable performance is achieved.
Future work will aim to improve the landmark localisation
accuracy and reduce the failure rate by exploiting the statis-
tical positional relationships between landmarks.


