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Abstract

Neural machine translation benefits from semantically rich representations. Con-
siderable progress in learning such representations has been achieved by language
modelling and mutual information maximization objectives using contrastive learn-
ing. The language-dependent nature of language modelling introduces a trade-off
between the universality of the learned representations and the model’s perfor-
mance on the language modelling tasks. Although contrastive learning improves
performance, its success cannot be attributed to mutual information alone. We
propose a novel Context Enhancement step to improve performance on neural
machine translation by maximizing mutual information using the Barlow Twins
loss. Unlike other approaches, we do not explicitly augment the data but view
languages as implicit augmentations, eradicating the risk of disrupting semantic
information. Further, our method does not learn embeddings from scratch and
can be generalised to any set of pre-trained embeddings. Finally, we evaluate the
language-agnosticism of our embeddings through language classification and use
them for neural machine translation to compare with state-of-the-art approaches.

1 Introduction

The performance of Deep Learning models implicitly depends on the data representations [4], hence
learning paradigms and metrics are defined in ways that optimize the model’s capacity to extract
useful features from the data. Contrastive Learning (CL) approaches focus on learning representations
of data, generally in self-supervised settings [26]. The abundance of unlabeled visual data and the
ease of introducing subtle yet effective augmentations are two main factors responsible for the success
of CL models. The pivotal motivation is to maximize the Mutual Information (MI) between features
extracted from augmented views of the data. Although CL paradigms achieve SOTA performance on
a variety of tasks, their success cannot be attributed to the properties of MI alone [55].

In the lingual domain, representations are affected by the semantic as well as the temporal information
present in the data [32]. Traditional approaches [39, 44] try to encode words into vectors according to
their relative positions in the corpus, whereas recent approaches optimize performance on language
modelling tasks to learn representations [46, 14, 7, 30, 37]. Lately, CL-based approaches have
emerged for learning universal representations by introducing augmentations during pre-training
[48, 35, 42, 10]. However, the discrete nature of languages makes it difficult to design label-preserving
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data augmentations [45]. Also, training paradigms like Multilingual Masked Language Modelling
(MMLM) [14, 10, 29] and Translation Language Modelling (TLM) [28, 10] require the model to
learn language-specific information too [10]. Due to mixed training objectives, there exists a trade-off
between the universality of the learned representations which depends on language-agnosticism and
the performance of the model on tasks that require language-specific information [10].

Neural Machine Translation (NMT) models aim to translate sentences from one language to another
while preserving meaning. This requires models to focus on extracting the semantic and language-
agnostic information over the language-specific information. For improving this, we propose a novel
Context Enhancement (CE) step that leverages the Barlow Twins loss [62] to maximize MI and
minimize redundancies between representations of parallel sentences. We do not explicitly augment
the data and rather consider sentences as augmented views of their meaning. Further, we do not learn
the embeddings from scratch and enhance pre-trained embeddings, increasing generalizability and
reducing the compute footprint. Unlike similar works [28, 10, 29], our objective does not conflict with
the primary training objective of NMT. We aim to validate our approach by evaluating performance
on Language Classification and NMT by using the WMT-14 [5] En→ De and En↔ Fr datasets to
compare the performance with state-of-the-art (SOTA) approaches for NMT.

Our main contributions are:
1. Improving performance on NMT through a novel Context Enhancement step that maximizes MI

by leveraging a contrastive loss, namely Barlow Twins, without explicitly augmenting the data.
2. We do not learn embeddings from scratch, hence our method and experiments can be generalised

to any set of pre-trained embeddings.

2 Related works

2.1 Contrastive learning

Deep convolutional networks [54, 23, 51, 27, 49, 6, 18] and even Transformers [59, 16] have played
a foundational role in learning reliable representations from labeled visual data. Owing to the
abundance of unlabeled data, there has been a shift from supervised to self-supervised learning
[63, 41, 43, 15, 20]. Recently, CL-based approaches [56, 9, 24, 21, 8, 62, 3] have gained popularity
and have shown exceptional performance in a variety of downstream tasks.

Most CL objectives maximize a tractable estimate of the lower bound of MI between two augmented
views of the same image [55]. Some approaches benefit from large batch sizes [9] and careful
implementation tricks like momentum updates [24, 21] or asymmetric encoders [21] to prevent
collapse. However, Barlow Twins and VICReg [62, 3] introduce loss functions that naturally avoid
collapse and reduce the dependency on the number of negatives while maximizing MI.

2.2 Neural machine translation

Performance of Natural Language Processing (NLP) models inherently depends on the word and
sentence embeddings. Models trained on large multilingual corpora learn embeddings that can be
used for a variety of downstream tasks [14, 47, 38, 31]. Some models try to improve performance
on multilingual tasks by focusing on learning language-agnostic components [1, 58, 10, 35, 42].
Although centroid subtraction displays signs of eradicating language-specific components [34], recent
works leverage contrastive approaches for the same [10, 35, 42]. However, recent literature has shown
that their success cannot be attributed to the properties of MI alone and rather it depends on the choice
of feature extractor architectures and the parametrization of the employed MI estimators [55]. Due to
random masking, MMLM and TLM require the model and embeddings to learn language-specific
information [10]. This may lead to a trade-off between the universality of the learned embeddings
and their performance on these tasks. Also, these paradigms require longer training durations [11]
and may not push the model to learn meaningful language semantics by masking common words
[61] or words with too many false negatives [22].

Most approaches for NMT use encoder-decoder architectures [50, 2, 19, 57]. The current SOTA
methods [53, 52, 17, 33] introduce subtle yet effective changes in the architecture [53] and training
method [52, 33] of the original Transformer [57]. Some methods even introduce augmentations
by back-translation or by exchanging words with their synonyms and cognates [35, 42, 17, 36, 40].
However, directly augmenting languages may alter the semantic and syntactic correctness [35, 42].
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Since NMT leverages joint information from two sentences, we improve NMT performance by
maximizing mutual information and minimizing redundancies between representations of such
sentences. Our method does not rely on explicitly augmenting the data and instead treats languages
as inherent augmentations introduced in the process of representing abstract meaning. Further, we
do not directly maximise any lower bound estimates on the MI but rather use an instantiation of the
Information Bottleneck Principle through Barlow Twins [62]. In addition, our method does not learn
embeddings from scratch but improves the language-agnosticism of pre-trained embeddings.

3 Approach

In a typical Transformer-based sequence-to-sequence translation model [57], the encoder E(.; θE)
learns to map a sequence of n-dimensional word embeddings x̃ = (x1, x2, · · · , xt1) ∈ Rt1×n from
the source language, to a sequence of h-dimensional latent representations ω̃ = (ω1, ω2, · · · , ωt1) ∈
Rt1×h. This is followed by a decoder D(.; θD) which maps the sequence ω̃, to a sequence of tokens
ŷ = (ŷ1, ŷ2, ...ŷt2) ∈ Rt2×n in the target language. The encoder uses masked self-attention whereas
the decoder uses both cross-attention and self-attention. For a parallel corpus ξ, the loss function
Ltrans, optimizes the objective Otrans, that is the log probability of obtaining the correct translation
ỹ, given the source sentence x̃

Otrans = − 1

|ξ|
∑
x̃,ỹ∈ξ

log p(ŷ|x̃) , Ltrans = − 1

|ξ|
∑
x̃,ỹ∈ξ

ỹ log ŷ (1)

Unlike recent works [35, 42], our method does not depend on explicitly augmenting the training data.
Rather, we hypothesise corresponding sentences from parallel corpora (x̃, ỹ) as different views of the
same meaning Ω i.e. languages are linguistic transforms that map meaning to sentences.

x̃ = ΛS(Ω) , ỹ = ΛT (Ω) (2)

where, ΛS and ΛT represent the linguistic transforms. The encoder tries to learn a transform Λ∗s , that
maps sentences to their meaning. An ideal encoder-decoder pair would learn the transforms Λ∗s and
ΛT respectively, such that Λ∗s(x̃) = Λ∗s(ΛS(Ω)) = Ω and ΛT (Ω) = ỹ.

We intend to improve NMT performance by maximizing MI between the representations of parallel
sentences and minimizing the redundant information about the language-specific components. We
propose an additional CE step for Transformer-based NMT models that focuses on enriching the
language-agnostic features of the sentence embeddings by using a contrastive loss function LBT
inspired by Barlow Twins [62].

Analogous to the original work [62], we use a Transformer encoder network that encodes two parallel
sentences (x̃, ỹ) from two different languages (S, T ) into two sequences of latent representations
ω̃S = E(x̃; θE) and ω̃T = E(ỹ; θE). Then a pooling function φ(.) is used to obtain sentence
embeddings σS = φ(ω̃S) and σT = φ(ω̃T ) ∈ RB×h. The loss is calculated between batch
normalized projections ZS = BN(ρ(σS ; θρ)) and ZT = BN(ρ(σT ; θρ)) ∈ RB×d where ρ(.; θρ)
represents the projection network.

LBT ,
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+ λ
∑
i

∑
j 6=i

C2ij︸ ︷︷ ︸
redundancy reduction term

(3)

where λ is a positive constant controlling the relative importance of the two terms. C is the empirical
cross-correlation matrix computed between the two batches of projections:

Cij ,
∑
b z

S
b,iz

T
b,j√∑

b(z
S
b,i)

2
√∑

b(z
T
b,j)

2
(4)
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Figure 1: A block diagram of our proposed architecture for the CE step. The encoder maps sentences
(x̃, ỹ) to sequences of latent representations (ω̃S , ω̃T ). These are then aggregated to get sentence
embeddings σ̃S = φ(ω̃S) and σ̃T = φ(ω̃T ). The contrastive loss LBT , is applied to batch
normalized projections ZS = BN(ρ(σS ; θρ)) and ZT = BN(ρ(σT ; θρ)). The weights θE , are fine
tuned for NMT after the CE step. Also, ω̃S is directly passed to the decoder while training on NMT.

where, zSb and zTb are the bth batch samples and i, j indicate the projection network’s output dimen-
sions. The cross-correlation matrix C ∈ Rd×d consists of values between 1 and -1 representing ideal
correlation and anti-correlation respectively.

We improve the pre-trained embeddings by optimizing the contrastive loss LBT on sentence embed-
dings with only the encoder during the CE step. For obtaining sentence embeddings, we use pooling
as a substitute to the widely used [CLS] token [47]. Using the learned weights from the CE step, we
attach a matching decoder to train on NMT by optimizing the loss Ltrans. However, during the latter
step, the encoder’s output ω̃S , is directly passed to the decoder without applying pooling, projection
or batch normalization.

4 Experiments

4.1 Datasets

WMT 2014 English-German: This dataset [5] contains about 4.5M En-De parallel sentences from
Europarl, News Commentary and Common Crawl.

WMT 2014 English-French: This dataset [5] contains about 27.9M En-Fr parallel sentences from
Europarl, News Commentary, Common Crawl and the 109 Word corpora.

Further, we will expand our evaluation to other language pairs from distant families following
preliminary results.

4.2 Ablations

4.2.1 Context enhancement step

In the CE step, we use N encoder blocks of the Transformer to form a sentence encoder. We train
the encoder using the Barlow Twins loss LBT , for a relatively small number of epochs ≤ 1000 with
different values of λ between 0 and 1 (in steps of 5×10-3). We use pre-trained embeddings from
mBERT [14], InfoXLM [10], XLM-RoBERTa [13] and XLM [29].

Encoder architecture: We vary the depth of the model N , from 8 to 24 (in steps of 2) and the model
dimension h, from about 500 to 2,000 (in steps of ≈ 200), following the work on mBERT [14].
Further, we vary the number of attention heads from 4 to 12 (in steps of 2).

Pooling function: We experiment with two pooling functions, φmean(.) and φmax(.), representing
average pooling and max pooling respectively.
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Projection network: The projection network has 3 linear layers, each having d output units. The
first two layers are followed by batch normalization and rectified linear units. We study how the
projection dimension d, affects the performance of our model on each evaluation task by varying it
from 32 to 16,384 (as per the powers of 2), following the original work [62].

Batch size: We study the dependence of our method on the batch size B, by varying the batch size
from 128 to 4,096 (as per the powers of 2), as proposed in the original work [62].

4.2.2 Translation

For each of the settings from Section 4.2.1, we fine-tune the model for NMT after the CE step. A
decoder with the same number of layers and model dimension is jointly trained with the context
enhanced encoder. Further, the decoder uses masked self-attention and cross-attention as opposed to
only self-attention in the encoder [57]. However, during translation, the output of the encoder ω̃S , is
passed directly to the decoder without using the pooling, projection or batch normalization layers.

Table 1: SACRE-BLEU [25] scores (higher is better) on WMT-14 dataset for En-De and En-Fr NMT
(† Represents methods that use augmentations)

Method En→De (↑) En→Fr (↑)
Transformer [57] 29.12 42.69
MUSE [12] 29.90 43.50
Depth Growing [60] 30.07 43.27
Transformer-Admin † [36] 30.10 43.80
Data-Diversification † [40] 30.70 43.70
BERT-Fused NMT [64] 30.75 43.78
Transformer + RD [33] 30.91 43.95
Ours (centroid subtracted) - -
Ours (after CE) - -

Table 2: Tokenized-BLEU scores (higher is better) on WMT-14 dataset for Fr-En NMT.

Method Fr→En (↑)
Transformer-6 [57] 39.8
mRASP2 † [42] 39.3
mRASP † [35] 45.4
Ours (centroid subtracted) -
Ours (after CE) -

4.3 Evaluation

For the classification task, sentence embeddings are obtained by pooling the encoder’s output.
However, for translation, the entire output sequence ω̃S is passed to the decoder without pooling.

Translation: We evaluate our model’s performance on NMT before and after the CE step. We
compare it with SOTA models as shown in Tables 1 and 2. Further, we also evaluate the performance
after subtracting the centroid from pre-trained word embeddings [34].

Language classification: To evaluate the language-agnosticism of the embeddings learned by our
model, we perform language classification on them. We compute the accuracy a1 of a language
classifier C1 trained on sentence embeddings obtained from mBERT after pooling. Freezing the
parameters of C1, we evaluate it’s accuracy a2 on embeddings obtained after the CE step. Then, we
train a language classifier C2 on embeddings obtained after the CE step and compute it’s accuracy
a3. For both word and sentence embeddings, the relation a2 < a3 < a1 indicates the absence of
language-specific components in the embeddings, validating an increase in language-agnosticism.

To compare our method with prior works [34], we compute a′1, a
′
2 and a′3 before and after subtracting

the centroid of all sentence embeddings. We compute a′1 by training a classifier C ′1 on the sentence
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embeddings obtained from mBERT. Then, for computing a′2, we evaluate C ′1 on the centroid sub-
tracted sentence embeddings. Finally, we compute a′3 as the accuracy of a model C ′2 trained on the
centroid subtracted sentence embeddings. We extend this entire procedure for word embeddings too.

Qualitative analysis: We visualize the distribution of word and sentence embeddings using t-SNE
plots of word and sentence embeddings before and after the CE step. To analyse the word-level
redundancies, we plot the correlation matrices between corresponding word pairs at different stages
of the CE step. Further, we plot the attention maps of every head of the encoder and decoder to
evaluate how the CE step affects the attention mechanism.

5 Conclusion

We propose a novel Context Enhancement step to push neural machine translation performance using
contrastive learning. Our method maximizes Mutual Information between two views of the same
meaning by leveraging the Barlow Twins loss. Unlike most works, our method does not depend on
explicit augmentations or implementation tricks. Further, our proposed objective pushes the model to
learn language-agnostic features which directly improves neural machine translation performance.
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