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Abstract

Feature importance methods are frequently used for XAI. However, the informa-
tion they convey (i.e., their interpretation) has been established mostly through
qualitative evaluations and, upon further inspection, their extent and usefulness
is now being questioned. ROAR, a study by Hooker et. al. suggests that most
methods fail at highlighting the most important parts of the image, namely those
that should trigger a correct answer. We propose IteROAR, an iterative extension
to ROAR that allows a more comprehensive test of the consistency with which
common attribution methods (e.g., CAM, GradCAM) focus on areas that contribute
most to the model’s prediction. With IteROAR a reference model is trained on
images whose most salient features get progressively occluded. In contrast to
ROAR, IteROAR evaluates feature importance maps each time an occlusion is
made, which enables the quantification of additional properties of importance maps
like the expected cumulative masked area or the mean mask overlap. These metrics
constitute a more comprehensive and stricter evaluation of the properties of feature
importance maps, and help elucidate the extent by which feature attribution maps
convey the information that has been empirically associated to them.

1 Introduction

Feature importance methods are functions that rank which part of an input elicits a stronger response
for a prediction model. In practice, these methods have been used as explanations for deep neural
networks and image classification problems. Algorithms like Class Activation Mapping (CAM) [24]
produce heatmaps whose interpretation has consolidated, albeit intuitively, as the area that corresponds
to the predicted class. This interpretation is shared among numerous methods that build upon
CAM [4, 17, 21, 18, 20]. However, some studies found that said interpretation has broad implications
that cannot be guaranteed. Among them, attribution methods fail at providing insights regarding the
features extracted by the model e.g., when the same area is highlighted for two different classes [1, 15].

More recently Hooker et al. [10] introduced ROAR; a benchmark showing that popular feature
importance methods perform no better than a random baseline at ranking importance of the input
features. This benchmark consists on measuring a model’s performance by retraining it on samples
after an increasing percentage of their input has been occluded, according to an initial estimation of
feature importance. The pillar of said benchmark is that progressive occlusion of features (as ranked
by the feature importance method) should yield a monotonic decrease in performance.

We argue that this assumption comes with critical caveats that said benchmark does not capture. For
example, a class can often be defined by a non-overlapping set of features (e.g., a rooster can be
identified by detecting either their beak, or their crest). A model that has a strong response to one kind
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Figure 1: Overview of IteROAR. A dataset Di is used to train a model fi with which a feature
importance method ξ outputs a map that can be thresholded to create a binary mask m. This mask
is used to create a modified version of the dataset Di+1 by multiplying it with the original input.
This process is then repeated I times. The sequence of masks measures if ξ focuses on areas that
progressively affect performance, or areas that have already been occluded (i.e., have no information).

of feature does not imply that its absence makes the other features less discriminating. Therefore,
estimating feature importance based only on the original sample (as done in ROAR), does not capture
the shift in emerging features that gain importance in the absence of others.

Moreover, an unintended property of learning-based systems is that they often excel by relying on
shortcuts that are particular to the benchmark, while not necessarily reflecting the general features of
the task [7]. Said shortcuts materialize in ML models as sets of non-robust features [11] which lead
to unstable predictions (i.e., the output changes drastically with a small modification to the input).
Quantifying importance based on a single estimation limits the kind of features that get highlighted
and hence, those more critical for the evaluation.

We introduce Iterative ROAR (IteROAR): a general benchmark inspired by ROAR that allows a
thorough evaluation of feature importance methods in three fundamental ways:

• In the absence of some of the salient characteristics, IteROAR allows feature importance
methods to shift focus to a different set of features each time that the model gets re-trained.

• IteROAR makes it possible to validate the ad-hoc interpretation given to feature importance
methods regarding the faithfulness [2] with which said methods highlight the most class-
relevant input features.

• IteROAR accounts for the class-relevant features that are both suppressed and introduced
by the masking operation.

By gathering consecutive responses of the feature importance method, IteROAR gives a broader
account of the features that the model responds to, be it of the robust or non-robust kind. Therefore, we
say that IteROAR serves as an adequate estimation of “Morgan’s Canon for Machine Learning” [7]
i.e., whether a prediction is the result of high-level abilities or is it simply exploiting a shortcut.

2 Related work

Feature importance algorithms are popular explanation methods, as their output helps out in inferring
otherwise opaque behaviors of deep neural networks. Although these techniques are not the only way
of generating explanations, they are often preferred as they are convenient to visualize and interpret.

One of the first methods to estimate relevance of input features is called Class Activation Mapping
(CAM) [24]. It is defined only for fully convolutional neural networks and works by constructing a
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coarse saliency map with the weighted average of the last convolutional activation. Later on, multiple
methods addressed the limitations of CAM by using gradients [17, 4, 20, 21] or other intermediate
activations [22, 3].

These methods or variations thereof, have been adopted as a way to justify predictions of black-box
models used for high-stake scenarios [23, 12]. However, these same methods are known to be
inconsistent with the expectations regarding their interpretation [15, 19].

The benchmark proposed by Hooker et al. [10] is a comprehensive mechanism to test one of the
properties that feature attribution maps have, namely the relation between highly salient areas and
their impact in a model’s performance. We build IteROAR based on a similar premise, and extend
the properties that can be evaluated by (1) testing whether attribution maps highlight areas whose
information has been occluded, (2) how well is the information being occluded by the masks, and (3)
if progressive occlusions lead to monotonic affectations of the model’s accuracy.

3 Methodology

In a nutshell, IteROAR works as follows: given a dataset Di = {zi,j}, zi,j = (xi,j , yj), j ∈
{1, . . . , N}, a prediction model fi is trained on Di, and a feature importance estimation method
ei,j = ξ(zi,j , fi) computes the feature importance map for all samples in Di w.r.t. the model fi. A
binary mask mi,j is created from the resulting map ei,j by applying a threshold τ such that individual
values mh of mi,j , h = {0, . . . ,A} equal zero if ei,j > τ and 1 otherwise. Finally, a new dataset
Di+1 = {zi+1,j}, zi+1,j = (xi+1,j , yj) is created with the masked inputs xi+1,j = xi,j �mi,j

where � corresponds to the Hadamard product. This entire process repeats I times resulting in a set
of datasets {D0, . . . ,DI}. A graphical overview of IteROAR is shown in Figure 1.

With IteROAR we can test for several expected behaviours of feature importance methods (non-
functional requirements of explanation methods as defined by Palacio et al. [14]). One such require-
ment is the aforementioned existence of different class-specific features that may gain relevance as
other features get occluded. Another interesting property lies on the expected saliency of consecutive
iterations: we can reasonably expect that computing the feature importance on samples whose pre-
viously salient areas have been masked, results in a map that highlights a different area outside of
the mask. In other words, the overlap between masks from consecutive runs mi,j ,mi+1,j should be
close to zero. In fact, unless the shape of the mask causes information leakage (e.g., by consistently
masking the outline of an object), the expected overlap over all iterations should be close to zero.
Formally, let m̄ = 1−m and || · ||0 be the zero “norm”, then the mean mask overlap (MMO)

MMO = Ei,j [||m̄i,j � m̄i+1,j ||0] (1)

quantifies how much of the feature importance lies on areas that have been occluded on the last
iteration.

As masks are generated sequentially, a stronger constraint is that the latest mask cannot overlap with
the area that has been masked so far. We call this the Mean Accumulated Mask Overlap (MAMO),

MAMO = Ei,j
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]
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and it indicates how much of the total occluded area so far is still marked as highly relevant for
the prediction. According to the intuitive interpretation of feature importance maps, we expect
MAMO ≈ 0. Naturally, this property should hold as long as the value of τ guarantees that there are
still enough class-relevant features for ξ to focus on. With this in mind, we constrain the values for τ
and I such that the number of masked pixels after I iterations equals at most a portion of the image’s
area A. In other words, ||m̄0,j ||0 × I = ρA, 0 < ρ < 1.

An even stronger expectation with respect to the masked area is that none of the masks should have
any overlap:

Ei,j [||m̄i,j � m̄n,j ||0] ≈ 0 i, n ∈ {0, . . . , I}, i 6= n (3)
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A corollary of Equation 3 is that the cumulative masked area for the j-th sample should approximate
the maximum allowed area ρA (as defined by the constraint above) after I iterations:

CMAj =

∣∣∣∣∣
∣∣∣∣∣
I∑
i=0

m̄i,j

∣∣∣∣∣
∣∣∣∣∣
0

≈ ρA (4)

We consider Equation 4 to hold as long as the model’s accuracy stays above random chance (and
no data leakage is observed). Therefore, we also monitor the model’s test accuracy as masks get
computed on each iteration.

4 Experiments

4.1 Setup

For IteROAR we adhere, for the most part, to the experimental setup outlined in Hooker et al. [10].
We use ResNet-50 as reference architecture for the classification model with He initialization [9].
Each combination of (dataset × feature importance method × masking operation) is repeated at least
three times1. The constraint ρ that determines the maximum area that can get masked is set to 0.5 and
following the setup by Chen et al. [5] we set the masking threshold τ to the 95th percentile.

4.2 Training and hyper-parameter tuning

As described in section 1, we start by loading the original dataset, training a ResNet-50 from
scratch using data augmentation, a learning rate schedule and mini-batch SGD as the optimizer. The
particulars of the hyperparameter space (optimizer, data augmentation, regularization, learning rate
schedule) is determined by tracking the most accurate model on a validation set. During validation,
the training set is split into 85%/15% sets and the latter is used for estimating validation metrics
(cross-entropy loss and accuracy). Note that, in contrast to ROAR, we do not apply test time pre-
processing [8] because of the required large computational budget, and because it does not have a
direct impact on the metrics of interest for this work.

4.3 Feature importance estimator

For each iteration i, once the model has been trained to convergence using Di, we apply the feature
importance estimator ξ(·, ·) for all samples in the test split of the corresponding dataset. For each
feature importance map, the threshold τ to generate the binary mask corresponds to the 95th percentile
of the values in the map. In order to favor comparable results, we analyze the feature importance
methods in Hooker et al. [10]: Sensitivity Heatmaps, Guided Backprop, Integrated Gradients,
SmoothGrad, SmoothGrad2 and VarGrad. Moreover, we add the following commonly used feature
importance methods to the test bench: Class Activation Mapping (CAM), GradCam and Occlussion
Sensitivity.

A fundamental difference between IteROAR and ROAR is how progressive occlusions are generated.
For ROAR the feature importance estimator ξ(·, ·) is computed only once on the original, non-
occluded images, and progressive occlusions are generated by lowering the threshold τ each time. In
IteROAR, we compute the feature importance map anew for each iteration of the dataset Di, while
leaving the threshold τ constant. This change alone allows us to test strong assumptions regarding
the interpretation that is usually given to such feature attribution maps: the highlighted areas contain
features that caused the model to issue a certain prediction. This implies that computing ξ(·, ·) on
partially occluded samples, based on a network that has been trained on such samples, should not
yield feature importance maps whose highlighted areas fall into previously occluded parts of the
sample.

4.4 Masking

Next, the mask is used to occlude the thresholded area on the corresponding input sample. We propose
two ways to fill in the occluded values: (1) with zeros, (2) with the mean value of the occluded pixels.

1depending on the availability of computational resources, we will run more trials.

4



4.5 Metrics

We report the distribution of the test accuracy over the number of iterations i = 0, . . . , I . Moreover,
the mean accumulated mask overlap MAMO and the distribution of mean cumulative masked area
E[CMAj ] will be reported for each combination of (dataset × feature importance method × masking
operation).

4.6 Datasets

We choose a selection of image datasets covering a wide range of spatial resolutions: CIFAR10 [13],
STL-10 [6], and Imagenet [16]. This helps us verify how sensitive (if at all) feature importance
methods are to the original spatial resolution. Note that, in order to evaluate all datasets using the
same network architecture, we resize all images to 224×224. Maintaining the original sizes of
CIFAR10 and STL-10 would require a modification on the original ResNet-50 architecture, which
would make these results less comparable across datasets.

4.7 Addressing data leakage through the masks

Even though the purpose of the masks is to occlude information on the original input, it is possible
that the mask itself provides (or leaks) information about the class e.g., if the masks for one class are
of a unique shape or occur in consistent locations.

Anticipating and measuring all possible features that masks may introduce quickly becomes untrace-
able. However, we propose a simple proxy metric to analyze the net effect of data leakage through
masks: given a dataset Di, we compute the masks of the training and the test set, so that a modified
version of ResNet-50 can be trained directly on the masks (the labels of the corresponding samples
are preserved as labels for the masks). The intuition is that the classifier would do no better than
random chance if the masks do not leak any class-relevant information. We propose running this
experiment at least three times and record the test accuracy and loss along with the standard deviation.
We then compare these results to a random baseline where labels are assigned at random to all masks.

Masks can leak information through position, size or shape. Altering size and shape can be addressed
by applying morphological operations (e.g., dilation/erosion), randomized noise or by replacing them
with their convex hulls. The mask’s position (assuming the area is contiguous) can be altered via
rotation, scaling, and transposition. In case the masks do cause data leakage (i.e., performance of
ResNet-50 when trained on masks is significantly higher than random chance), we propose modifying
the masks with the aforementioned operations, for each iteration of MAMO.
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