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Abstract

In light of the exploding cardinality of common object detection datasets, and the
possibility of joining multiple general available datasets, it is of great importance
to select a minimum subset that is representative and effective enough for training
without suffering from a significant performance drop. We extend the previous work
on subset selection for classification tasks to object detection and propose a novel
supervised data subset selection method - uncertainty adjusted Term Frequency-
Inverse Document Frequency (TF-IDF) sampling - that selects data based on
informativeness while ensuring representativeness. The proposed method aims
to address 1. the diminishing return of large scale object detection data. 2. the
inherent dataset class imbalance due to the real-world representation disparity of
different classes. 3. the lack of representativeness induced by the active learning
based subset selection approaches.

1 Introduction

Recent researches have been aiming to advance object detection models’ performance and capability.
The race in performance leads to the vast adoption of computation hungry detection models, typically
requiring 8 Tesla V100s training for days on the MSCOCO dataset [1]. To increase the model
capacity, large-scale object detection datasets like Object365 [2] and Open Images [3] have emerged
with an order of magnitude more images than the MSCOCO, drastically increasing the computation
cost of model training. At the same time, there are efforts of combining multiple datasets into a
unified training set to enhance further the representability and diversity of the training set [4].

With the vast imbalance comes the challenge in the degraded performance in minority classes. Past
Open Image Competitions [5, 6] have empirically verified that large scale object detectors might
exhibit heterogeneous performance across different categories. The models trained on Open Images
lack in both localization and classification accuracy on poorly represented categories, which is likely
a result of the intrinsic imbalanced class distributions [5, 6].

These challenges call for a reliable data subset selection algorithm scalable to the enormous object
detection datasets. In this study, we will thoroughly investigate different subset selection approaches
and

• devise a data subset selection algorithm combining active learning with term frequency-
inverse document frequency (TF-IDF);

• investigate the performance gain (under budget-restrained settings) over training an object
detector using the full dataset.
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2 Related work

2.1 Subset selection

Prior work on subset selection has resorted to coresets, submodular functions, and active learning.
Coresets aim to produce subsets that best preserve geometric structures, on which the clustering
algorithms such as SVM can achieve competitive performance. Recent researches [7, 8] have
formulated subset selection process as constrained submodular optimization. Wei et al. [7] established
connections between two machine learning classifiers, Naive Bayes classifiers and Nearest Neighbour
classifiers, and submodular function, making subset selection for these classification tasks viable
through greedy optimization [9]. Settles [10] did preliminary studies on active learning for subset
selection by iteratively sampling the most informative data. Wei et al. [7] proposed filtered active
submodular selection (FASS), a form of multi-stage mini-batch active learning, for subset selection
and achieved admirable results in text categorization and handwritten digits recognition. Later
work [8] extended FASS to image classification tasks with deep CNNs.

2.2 Near-duplicate image detection with TF-IDF

Chum et al. [11] extended TF-IDF to a bag of visual words image representations for near-duplicate
image detection with min-hash algorithms. It proposed a novel similarity measure combining TF-IDF
with SIFT features that performs well in a large-scale news video dataset and an image retrieval
dataset.

2.3 Safe-screening and determinantal point process

Safe screening, pioneered in [12], concerns safely removing non-active features before or during
optimization without incurring false negatives. Shibagaki et al. [13] extend [12] by jointly removing
non-active features and data samples, while Mialon et al. [14] investigate a relaxation of the strongly
convex objective required by [13]. It does so by proposing a novel Ellipsoid method compared to the
ball-like safe region employed by [13].

Assuming negative correlation [15] or pairwise repulsion [16] in the ground set, determinantal point
process (DPP) forms a probability measure over all subsets and aims to produce diverse samples by
assigning higher probabilities to sets consisting of dissimilar items.

2.4 Active learning

Active learning taps into the issue of limited labeled data. It has been widely used in classification
tasks [17–21] and is recently applied to object detection [22, 23].

At its core, active learning assumes that not all data contribute equally to supervised learning [24]. It
trains a base model on the labeled data, which, with the help of score functions, is subsequently used
to decide which set of unlabeled data to be labeled first by an oracle.

Common score functions evaluate samples by informativeness, reflected by the uncertainty of
model decisions, and often measured by the entropy of predicted results. It is prone to a lack of
representativeness, which motivates researchers to design solutions with both informativeness and
representativeness in mind [7, 25, 26], but no such study has been conducted in the object detection
setting.

3 Problem statement

Consider an object detection dataset V consisting of the set of images D = { Ii | i ∈ {1, . . . , NI} }
and the set of bounding box annotations A, where Ii refers to the ith image. Hence, NI refers to the
total number of images in the dataset. A = { (bij , cij) | i ∈ {1, . . . , NI}, j ∈ {1, . . . , ni} }, where
bij = (xij , yij , wij , hij) and cij ∈ {1, . . . , NC} denote the bounding box coordinates and the class
labels for the box j in the image Ii, respectively. NC refers to the total number of categories and ni

refers to the total number of the boxes in the image Ii.

Given a ground set V , the data subset selection problem in the object detection context concerns
selecting an optimal subset of images S out of 2NI number of subsets Si ⊆ D, i ∈ {1, . . . , 2NI}, so
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that an object detector trained on the subset of annotations, B = { (b, c) | images in S } ⊆ A suffers
minimal performance drop in comparison to one trained on the full annotation A.

4 Object detection data subset selection

4.1 Supervised data subset selection with TF-IDF

As is illustrated in Figure 1, the co-existence of bounding boxes and images is akin to the relationship
between terms and documents.

Figure 1: Term-document analogous to BBox-image

For a set of images D and its corresponding annotations A, the TF-IDF score ωi,c is calculated for
the bounding box instance of class c in the image i in equation 1,

ωc,i,A,D = tfc,i,A,D ∗ log
NI

dfc,A,D
(1)

where c ∈ {1, . . . , C} refers to a category, i ∈ {1, . . . , I} refers to a sample image. In equation 1,
tfc,i is the number of the bounding boxes of category c in the image i, and dfc is the number of
images in D where a bounding box instance in A of category c appears. log NI

dfc
is commonly referred

to as Inverse Document Frequency (IDF).

Given the TF-IDF of its bounding box instances, an image is ranked within the set of images D based
on the sum of TF-IDF scores for all the unique categories it includes, as in equation 2,

Qi,A,D =
∑

c′∈{1,...,C}

ωc′,i,A,D (2)

For over-populated categories, we rank the images according to the Q and sample top-t images, as is
outlined by algorithm 1.

Algorithm 1: TF-IDF based training data subset selection with threshold t

Data: annotations A, images D, threshold t, category id c
Result: the selected subset of annotations B

1 c← 0, B ← {}, Dc ← all images involving category c, ADc ← all annotations for the set of
images Dc ⊆ D;

2 while c 6= C do
3 if the number of images involving category c > t then
4 Dc ← Dc sorted in descending order by Qi,ADc ,Dc , i ∈ Dc;
5 B ← B ∪ Atop(Dc,t), top

(
Dc, t

)
← top t images in Dc;

6 else
7 B ← B ∪ ADc

;
8 end
9 c← c+ 1;

10 end
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4.2 Unsupervised data subset selection with Active Learning

We extend works in submodular active learning [27, 7, 8] to object detection data subset selection.
Initially trained on a small subset of labeled training data, an object detection model is used to run
inference on the remaining images and produce image scores using various scoring functions [23].
Top K scored images and their predicted labels are then selected and added to the initial training data
to train an improved object detection model. This enrolment procedure is repeated recursively until
the desired subset is produced. The greedy optimization process arrives at a good approximation of
the optimal solution and guarantees the lower bound of e−1

e under submodularity set functions [28].

Score functions usually measure the uncertainty of the predicted instances. Score functions using
the entropy, mutual information (MI), and the entropy of the predicted bounding boxes (Det-Ent)
are investigated in [23], and the sum of entropy of bounding boxes achieves the best performance in
object detection. Adopting the entropy of bounding boxes as the score function and summation as the
score aggregation function for each image, the active learning assisted subset selection is summarized
in algorithm 2.

Algorithm 2: Subset selection using active learning under submodularity constraint
Data: initial subset of labeled image S0, initial annotations B0, iterative enrollment K
Result: the selected subset of annotations B

1 n← 1, N ← total iterations;
2 while n 6= N do
3 train an object detection model On on Bn−1;
4 perform inference on B \Bn−1 using On and calculate scores for S \ Sn−1;
5 sort images in S \ Sn−1 by the aggregated scores;
6 Sn ← Sn−1 ∪ top (S \ Sn−1,K) , Bn ← box annotations in image set Sn;
7 n← n+ 1;
8 end

4.3 Supervised data subset selection with uncertainty adjusted TF-IDF

The innate lack of representativeness of uncertainty-sampling based subset selection manifests itself
in the potentially imbalanced subset sampled by the active learning based approaches. As TF-IDF
incorporates representativeness by design, we propose a novel subset selection method, uncertainty
adjusted TF-IDF sampling, baking in uncertainty through active learning while taking advantage of
the statistical distribution of the full data.

Figure 2: The inference results of an image in the MVD [29] dataset. The dark yellow boxes visualize
model predictions. The dark green boxes are ground truth labels. Note the false negative objects:
“Catch Basin", “Manhole", and “Lane Marking - Crosswalk" will cause the score of the image to be
undervalued.

Motivation. Brust et al. [30] empirically showed that active learning is susceptible to class im-
balance. In the active learning setting, the aggregated score of the image shown in Figure 2 will
be underestimated, leading to poor representation in the selected subset of the classes where the
detection model often fails, which would, in turn, hamper the performance of the models trained on
the subset.

To deal with the under-represented classes, we propose to utilize the global representation embedded
in the TF-IDF score and dynamically adjust TF-IDF with the class performance of the active learning
model. Notably, the uncertainty adjusted TF-IDF is calculated on the full annotation A rather than
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the subset B to avoid worsening the insufficient representation during active learning. Thus, the
uncertainty adjusted TF-IDF preserves the representativeness while utilizing informativeness.

Credibility adjusted TF-IDF. In NLP, to account for certain tokens having a greater influence on
the document classification result, the credibility-adjusted TF-IDF [31] resorts to assign more weights
to higher impact tokens. The credibility-adjusted term frequency (TF) takes the form of equation 3,

tf i,d = (0.5 + ŝi) ∗ tfi,d (3)

while the IDF remains as is. ŝi is a smoothed credibility score derived from Buhlmann credibility
adjustment [32], measuring the effect token i has on the binary classification of document d.

Uncertainty adjusted TF-IDF. Inspired by credibility adjusted TF-IDF in the text classification
settings, the uncertainty adjusted TF-IDF is formulated in equation 4,

ω′c,i,A,D = (1.5− APc,B

2
) ∗ tfc,i,A,D ∗ log

NI

dfc,A,D
(4)

where APc,B ∈ [0, 1] denotes the mean Average Precision (mAP) on class c of a model trained on
the annotations B. It is re-calibrated to assign greater weights to poorly performed classes.

The subset selection process follows that of algorithm 2 except step 5 and 6. After training an object
detection model, its performance (AP ) is evaluated on the validation set and used for calculating ω′.
With the aggregation function in equation 2, we derive the adjusted aggregated score Qi for each
image. At each iteration, the images are sampled in descending order of the aggregated scores.

5 Experiments Protocol

5.1 Datasets and implementation details

We plan to perform experiments on OID for its extensive coverage and well-documented benchmark
results. COCO and MVD will also be included. Regarding detectors, we will adopt Faster-RCNN [33]
FPN [34] with backbone ResNet50 [35]. For model training, we will adopt SGD with warm-up, an
initial learning rate of 0.00125 * batch size, cosine learning rate schedule, and 12 total epochs per
iteration. Other hyperparameters will follow related work.

5.2 Subset selection methods and baselines

To compare different subset selection methods, we train models on the subset selected by TF-IDF,
uncertainty adjusted TF-IDF, and active learning. The initial seeded dataset for active learning is
randomly selected.

At iteration n of each subset selection method, an identical model pre-trained on MSCOCO will be
trained on the subset obtained at iteration n for 12 epochs, simulating a limited budget. After the
training is completed, the model will perform inference on the remaining training data S \ Sn−1 and
enroll K images to form the desired subset Sn. The testing results on the held-out test set across
different subset selection methods per iteration will be updated to Table 1 and plotted in Figure 3a.

(a) The training loss and validation accuracy. (b) Performance against run time.

Figure 3: Plots visualizing convergence and run time.

Table 1 will also include the performance of a baseline model trained on the full training data, denoted
full baseline, and a random baseline, where images are randomly selected at each iteration. Additional
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mAP at subset selection iteration n
Subset selection methods 1 2 3 4 N (full data)

random baseline
active learning (Det-Ent)

tf-idf
uncertainty-adjusted tf-idf

DPP
full baseline N/A N/A N/A N/A

Table 1: To be reported: the performance (mAP) on the OID held-out validation set.

mAP
random

tf-idf

(a) Initial training data - selec-
tion approach

mAP
Det-Ent

total loss

(b) Score functions

mAP
seed 1
seed 2
seed 3
mean

std

(c) Initial data seeds - active learning

mAP
seed 1
seed 2
seed 3
mean

std

(d) Initial data seeds - adj. TF-IDF

Table 2: Ablation studies.

subset selection experiments using determinantal point process will also be conducted, resulting in a
total of 11 runs.

The inclusion of baseline experiments will give us a better idea regarding how the proposed methods
affect the performance given limited computational resources. To illustrate this, we will plot Pareto
curves depicting performance over total training and subset selection time in Figure 3b.

5.3 Ablation studies

Initial seeded training data. To investigate the impact the initial seeded training data has on the
performance of active learning, we compare the performance with randomly selected initial data
against TF-IDF sampled initial training data in Table 2a.

Score functions for active learning. We opt to have total loss as an alternative score function to
the active learning approach with Det-Ent score function (Table 2b).

Varied random seeds. To account for the variance induced by randomness, we will perform
multiple runs with different random seeds (Table 2c and 2d).

6 Discussions

This paper proposes a novel supervised data subset selection method that selects data based on
informativeness while ensuring representativeness. The planned experiments will provide new
insights into budget-limited imbalanced object detection.
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