
Playing Atari with Hybrid Quantum-Classical
Reinforcement Learning

Owen Lockwood
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
lockwo@rpi.edu

Mei Si
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy, NY 12180
sim@rpi.edu

Abstract

In order to address the challenge of classical to quantum data conversion in rein-
forcement learning, we propose to use a neural network as a data encoder, and
apply this technique to Atari games. Specifically, the neural network converts
the pixel input from the games to quantum data for a Quantum Variational Cir-
cuit (QVC); this hybrid model is then used as a function approximator for the Q
value in Double Q Learning. Through several ablation studies we investigate the
effect of encoding architectures, number of quantum bits, and output techniques
on the performance. In addition, we compare the hybrid quantum-classical ap-
proach to the purely classical neural network approach and evaluate empirically
the computational advantage.

1 Introduction

Reinforcement Learning (RL) has advanced dramatically in the last decade. Superhuman performance
has been achieved in a variety of very complex tasks such as Go [31], Dota 2 [4] and StarCraft II [36],
via deep RL. Common RL benchmarks include games and robotic manipulation as both have defined
rules and reward signals. Algorithmic improvements in the field of deep RL are usually driven by a
desire to achieve superior performance, achieve this performance faster, and/or reduce the training
time or model size.

Parallel to the acceleration of deep RL achievements, significant advancements have been made
in quantum computing. Early work in quantum computing was catalyzed by Shor’s algorithm, a
polynomial time algorithm for integer factorization with significant cryptographic implications [30].
However, it has only been in recent years that quantum computing became a realizable technology,
with recent claims of ’quantum supremacy’, i.e. running an algorithm on a quantum computer that
would be intractable on a classical computer [2]. Quantum algorithms are able to offer unique
speedups because of their exploitation of quantum mechanical properties, such as superposition and
entanglement.

Quantum machine learning (QML) has attracted an increasing amount of attention in recent years.
There is significant potential for theoretical quantum speedups on machine learning tasks, e.g.
quantum perceptrons and quantum RL have the potential for O(

√
N) speedups [5]. Already work

has been done to develop quantum generative adversarial networks [11], [17], quantum Hopfield
networks [27] and quantum support vector machines [26]. Recently, the quantum RL field [12] has
been expanding with a variety of approaches such as using Q Learning and SARSA [14] and quantum
energy methods [15]. These works differ from this proposal as they utilize different techniques (such
as Grover iterations and Boltzmann machines), environments, encodings, usually being restricted to
Gridworld based environments.

1st Pre-registration workshop (NeurIPS 2020), Vancouver, Canada.

We investigate the potential that quantum computing has to aid with reinforcement learning. We
expand upon our previous work Lockwood and Si [18], which was in turn inspired by Chen et al. [8]
to use Quantum Variational Circuits (QVC) – quantum circuits with gates parameterized by learnable
values – in reinforcement learning. In [8], QVCs were used with Double DQN for a deterministic
4x4 gridworld. Chen et al. [8] reported that the parameter space complexity scales linearly with
the input space in QVCs, i.e. O(N), which is a significant improvement over the traditional neural
network DQN which has parameter space complexity O(N2). They utilized computational basis
encoding, which involves converting an input into binary and flipping the qubits to that binary state.
However, this technique is unsuitable when the size of inputs is large or when floating point inputs
are involved. Lockwood and Si [18] demonstrated the applicability of using QVCs to environments
with larger input spaces by utilizing a more efficient encoding scheme. Specifically, the encoding
scheme transformed each value in the input into rotations for a single qubit. This means that the
number of qubits required is equal to the length of the input. This is feasible when the input is of
size 4 (like in CartPole), but not possible for larger input spaces. For Atari, this would require 7,056
qubits for a single frame. This is infeasible, meaning that traditional benchmarks (like Atari) remain
inaccessible. Although algorithms exist for optimal (amplitude) encoding schemes, i.e. encoding 2N

numbers in N qubits, they require an exponential number of gates (in relation to the input size) which
is not only intractable but negates the exponential gains from the amplitude encoding [29] [23].

In order to solve the encoding problem, we employ a neural network to approximate encoding
classical data into quantum circuits. The Atari environments were previously impossible due to the
dimensionality and size of the required inputs, but are made available by using a neural network
encoder. To investigate this encoder, and the potential for QML to assist with RL tasks, we propose
a large empirical study to be conducted on the Noisy Scale Intermediate Quantum (NISQ) [25]
simulator developed by Google as an extension to Tensorflow: Tensorflow-Quantum [7]. Combining
recent improvements in the field of quantum RL and expanding from previous work, we investigate
and compare hybrid quantum classical approach with purely classical approaches. We apply our
techniques to two pixel based Atari OpenAI Gym environments, Breakout and Pong [6]. The input
into our proposed model is more than 7,000 times larger than CartPole used in [18], one of the
most complex previous environments. We hypothesize that this technique of using a neural network
encoder will solve the previous problems of encoding and enable us to unlock quantum advantages
even for large, high dimensional input spaces.

2 Background

2.1 Reinforcement Learning

Reinforcement learning is conceptualized as at least one agent interacting with an environment with
the goal of maximizing a numerical reward signal [33]. A common formalization of RL are Markov
Decision Processes (MDPs). The MDP tuple, 〈S,A, P,R, γ〉, consists of a set of states S, actions A,
the probability of transition from one state to the next P = P [st+1 = s′|st = s, at = a], the reward,
R, and the future reward discount γ. The goal is to design an agent that with policy π, π(st) = at,
such that it maximizes the expected reward, E [

∑∞
t=0 γ

tR(st, at)|π].

Deep Q Networks (DQN) are an off policy and model free algorithm that uses a function approximator
to estimate the Q function [21]. The Q function approximator, parameterized by θ, is defined as the
expected future reward Qθ(s, a) = Eθ[R|s0 = s, a0 = a]. This can also be defined recursively for
easier updates: Q(st, at) = rt +maxat+1

Q(st+1, at+1), where Q(st, at) is the Q value of a certain
action in a given state at time t. The original Q learning policy is defined for discretized action spaces
and is defined as π(s; θ) = maxaQ(s; θ), i.e. the policy is to choose the action with the largest
Q value as approximated by the parameters θ [37]. Updates to this policy are made via the mean
squared Bellman loss, Lt(θ) = E[(rt + γ ∗maxQ(s′, a′; θ)−Q(s, a; θ))2] from which gradients
can be calculated [21]. In Q learning with function approximation, failure to converge is a common
problem. One source of this problem is the max operation, which leads to over-estimations of the Q
value [34]. One solution to this is Double Q learning, used in this work, in which a separate target
network is used exclusively for predicting the future Q value inside the max operation [35]. In this
work we use neural networks and QVCs as function approximators that estimate the Q values.

2

2.2 Quantum Machine Learning

Quantum machine learning (QML) is the intersection of machine learning and quantum computing.
It seeks to use quantum computing to obtain quantum advantage on machine learning tasks. Quan-
tum advantages usually stem from the abilities of quantum computers to represent and operate on
information that scales exponentially with the number of qubits.

Two of the most important features of quantum mechanics that quantum computing exploits are
superposition and entanglement. Unlike in classical computers, where bits are limited to be 0 or
1, quantum bits (qubits) are capable of representing both 0 and 1 simultaneously. This is because
the qubit is a quantum mechanical wavefunction Ψ that can be a linear combination of terms, e.g.
Ψ = α|0〉 + β|1〉. This enables information represented to scale O(2N) for N qubits, giving an
exponential advantage over linearly scaling classical bits. However, it is important to note that only a
single value can be obtained from the wavefunction as it ’collapses’ once a Hermitian operator (i.e. a
measurement) is applied.

Entanglement is a more complex phenomenon results from the inseparability of combined wavefunc-
tions. When two qubits are separate (i.e. not entangled) their wavefunction can be mathematically
divided into individual wavefunctions. Consider one qubit in a superposition and another in the pure
state |0〉, the two qubit wavefunction would be: Ψ = α|00〉 + β|10〉. This can easily be separated
into Ψ = (α|0〉+ β|1〉)(|0〉). However if the two qubits are entangled this is not possible. Consider
the two qubit wavefunction, called the Bell State or EPR state, Ψ = 1√

2
|00〉+ 1√

2
|11〉. If we were

to attempt to separate this wavefunction and write it as two distinct wavefunctions that are simply
multiplied together, we would see get Ψ = (a|0〉+ b|1〉)(c|0〉+ d|1〉). However, this would require
a ∗ c = 1√

2
, b ∗ d = 1√

2
, a ∗ d = 0 and b ∗ c = 0 which is clearly not possible. This is what is meant

by "inseparable". This has important implications because it means that a single operation on one
qubit influences all qubits because their wavefunctions are mathematically inseparable.

2.2.1 Quantum Variational Circuits

Special operations, called quantum gates, are required in order to manipulate qubits. There are a
number of quantum gates, but the ones relevant to this work are the Pauli rotation gates and the
controlled NOT (CNOT) gate. The Pauli rotations gates, Rx(θ), Ry(θ), Rz(θ), rotate around the
specified axis θ radians. Mathematically: Rα(θ) = e−i

θ
2σα , where α = X,Y, Z. The controlled NOT

(CNOT) gate is a two qubit gate that induces entanglement in qubits. The CNOT is not parameterized
and is used for entanglement purposes only. The aforementioned θ are the learnable parameters that
are updated via gradient descent.

Quantum Variational Circuits (QVCs) are a collection of qubits and the set of gates that operate on
them [19]. There are three main components of a QVC: an encoding circuit, a parameterized circuit,
and a readout circuit [3]. The encoder converts classical data into quantum data (i.e. parameter free
quantum circuits). The parameterized circuit operates on the on the quantum data to produce an
approximation of the desired state. Finally, a readout measurement is taken, usually one of the Pauli
operators (X,Y, Z) is used to extract information from the circuit. In this work we use the Z operator,
or the ’computational basis state’. External to the quantum circuit (on a classical computer) a loss
function and associated gradients are calculated then the parameters are updated.

The gradients for QVCs cannot be calculated using the same differentiation techniques as traditional
neural networks. The parameter shift differentiator is used for this work. This differentiator is
implemented as part of TensorFlow-Quantum package. The rotation that a gate enacts on a qubits
can be represented in the form: U `i (θ`i) = e−iaGθ

`
i (1), where ` is the layer index, a is a constant

and G a linear combination of Pauli gates, called a generator [10]. A QVC is a function of θ, and is
equivalent to the expectation value of the readout operator (Ẑ in this work). This is written as: f(θ) =

〈Ψ0|U†(θ)ẐU(θ)|Ψ0〉, where Ψ0 represents the initial wavefunction [7]. The parameter shift rule
states that ∂

∂θf(θ) = 〈Ψ0|(∂∂θU
†(θ))ẐU(θ)|Ψ0〉+ 〈Ψ0|U†(θ)Ẑ(∂∂θU(θ))|Ψ0〉 (2) [28]. Equations

(1) and (2) can be combined to yield a differentiation rule: ∂
∂θf(θ) = r[f(θ + π

4r) − f(θ − π
4r)]

[10]. In this formula r is a value that can vary between implementations but is often set in relation
to the eigenvalues of the operations e0, e1 where r = a

2 (e1 − e0) . Thus in the case of Pauli gates,
r = 1

2 because the eigenvalues of all Pauli matrices are −1, 1. Equation (2) is the parameter shift

3

technique for how to differentiate through a quantum circuit enabling both gradients for the circuit
and backpropagation through the circuit.

The idea behind this work is to replace the traditionally hard problem of encoding classical states
into quantum circuits with a neural network. Because of the differentiability of the quantum circuit,
gradients can be carried through and applied to the neural network encoder. The neural network will
output the rotations of gates that transform pure states. This is a significant departure from previous
approaches to quantum RL and should enable significantly larger state encoding.

3 Approach

3.1 Methodology

The algorithm used in this work is Double Deep Q Learning (DDQN) [35]. As in other works,
the only algorithmic differences are the function approximators, the fundamentals of the algorithm
remain the same [18] [8]. The difference in this work are internal to the hybrid model, not the QVCs
role in the algorithm. The simplicity of just replacing the neural network with a QVC or hybrid model
has been shown to work in simple applications like CartPole [18] and Gridworld [8] environments.
The setup of the Atari benchmark also remains unmodified, in that the goal is to maximize the reward
achieved and the input is the 4 framestacked 84X84 images which has been cropped and grey scaled.

For the quantum architecture, we use the quantum convolution: a parameterized two qubit unitary, i.e.
arbitrary entangled rotation, on every set of adjacent qubits [9]. A single two bit unitary operation
is shown in Figure 1. After the quantum convolutional layers, there are 3 layers of the circuit with
the same architecture shown in Figure 2, generated via QuanTikz. More qubits can be added to this
circuit (which only displays 4) by expanding either the inner set or outer set and using a CNOT gate
to induce entanglement with the rest of the circuit. Note that Rα(θ) rotates about α by θ, but αθ is
that gate raised to the power of θ, where α = X,Y, Z.

|0〉 Xθ Y θ Zθ ZZ Y Y XX Xθ Y θ Zθ

|0〉 Xθ Y θ Zθ ZZθ Y Y θ XXθ Xθ Y θ Zθ

Figure 1: Two Qubit Unitary

|0〉 Rx(θ) Ry(θ) Rz(θ)

|0〉 Rx(θ) Ry(θ) Rz(θ) Rx(θ) Ry(θ) Rz(θ)

|0〉 Rx(θ) Ry(θ) Rz(θ) Rx(θ) Ry(θ) Rz(θ)

|0〉 Rx(θ) Ry(θ) Rz(θ)

Figure 2: Single Layer of Parameterized Circuit

It is important to note that the concept of a ’layer’ is mainly aesthetic in QVCs, the layer operations
are not the same as in classical neural networks. In neural networks a layer indicates that there
is matrix multiplication of the inputs and weights, a layer in a QVC merely indicates a group of
operations, i.e. after you make the circuit you could change all the layer ’cutoffs’ and that would not
change the mathematical operations of the circuit. This layer architecture is an expansion upon an
design that has been empirically shown to be one of the most powerful QVC architectures [32].

Significant improvements have been made in encoding classical data to quantum circuits. However, it
falls far short of the necessary efficiency for the large inputs Atari requires, as previously indicated.
In this work we explore an approximate solution by using a neural network. We use a classical
neural network to convert the classical pixel data into quantum data. Specifically, this network takes

4

as input the classical data and outputs rotations for the gates in order to establish an approximate
encoding. We use the same 3 layers as before to encode the QVC due to their expressibility, i.e. the
function space they can learn. Similar to traditional neural networks, for QVCs with large numbers
of qubits and many layers, one challenge is the quantum barren plateaus problem [20]. We combat
this problem in two ways. First by utilizing QCNN layers which are able to more effectively sidestep
barren plateaus in gradients [24]. Second we use an initialization technique, called identity block
initialization, specifically designed to combat this problem [13]. In order to match the action space
of the environment we use two techniques: quantum pooling and classical dense. The quantum
pooling operation consists of Pauli X,Y, Z gates to a parameterized power, as shown in Figure 3.
This operation reduces two qubits into just one qubit; the qubit that is pooled out is called the source
and the qubit that remains in operation (and is pooled ’to’) is called the sink.

Source Xθ3 Y θ4 Zθ5

Sink Xθ0 Y θ1 Zθ2 Z−θ2 Y −θ1 X−θ0

Figure 3: Parameterized Quantum Pooling Operation

The two output techniques are quantum pooling or classical dense neural networks. For quantum
pooling we can apply this operation the desired number of times to reduce the number of qubits to
the action space, then apply the readout operator and extract the estimated Q value for each action.
Or we can apply readout operators to all the qubits without pooling them then feed these results in
the a classical dense neural network layer that matches the action space. We investigate and compare
both of these options.

As there are many moving parts in this hybrid model, we present a brief overview of what a single
forward pass of the model would look like. A 84x84x4 input is fed into a neural network. That neural
network outputs rotation parameters for 3 layers of the circuit shown in Figure 2. The goal being
that the quantum circuit is now encoded with the pixel information. A quantum convolution is then
applied (i.e. the unitary circuit shown in Figure 1 is applied to all neighboring qubit pairs). This
serves the same purpose as the traditional convolution operation, specifically for image and spatial
analysis. Attached to this is 3 more layers of Figure 2. Finally, either measurements are made for
every qubit and fed into a neural network, or quantum pooling operations are applied until the number
of active qubits is equal to the action space and measurements are made for the Q values.

The classical architecture we compare the hybrid to is well established and we use a similar architec-
ture as in Mnih et al. [22]. Specifically our architecture has 4 convolution operations with 32, 64,
128, 128 filters followed by a 1024 unit and 512 unit dense layer followed by an output layer the size
of the action space. Note that this network has on the order of 106 trainable parameters.

3.2 Experimental Protocol

The purpose of this study is to empirically evaluate performance of classical and hybrid quantum-
classical DDQN on 2 Atari environments: Pong and Breakout. We chose these environments as they
represent two distinct types of game play, with Pong being a multiplayer game in which the agent
must learn to play against the default player and Breakout is a single player game, in which the only
challenge is the environment (not other players). Quantum techniques have the potential to use less
parameters and achieve better policies at a faster rate, as previously stated [18] [8]. We hypothesize
that using a neural network to encode classical information into quantum circuits will enable the
successful use of QVC’s leading to better and faster rewards on these Atari environments.

To this end, we propose a total of 130 experiments, 120 hybrid experiments and 10 classical for
comparison. For both environments, we repeat each experiment 5 times for both hybrid and classical
networks. This results in 10 experiments using the classical neural network as described in Section 3.1.
For the hybrid model, there are 12 different configurations, resulting in 12*10 = 120 experiments.
See Table 1 for an outline of all the experiments.

5

Hybrid Variations Encoder Qubits Output
D5D Dense 5 Dense
D5Q Dense 5 Quantum
D10D Dense 10 Dense
D10Q Dense 10 Quantum
D15D Dense 15 Dense
D15Q Dense 15 Quantum
C5D Convolution 5 Dense
C5Q Convolution 5 Quantum
C10D Convolution 10 Dense
C10Q Convolution 10 Quantum
C15D Convolution 15 Dense
C15Q Convolution 15 Quantum

Table 1: The 12 Hybrid Variations

The goal of proposing these experiments
is to thoroughly evaluate the potential of
the hybrid quantum classical approach
and to eliminate statistical outliers, and
alleviate the problems of brittleness com-
mon in RL. There are three different as-
pects of the hybrid model that we ex-
periment with. The first is the encod-
ing scheme. There are two different
approaches, classical densely connected
neural network layers or classical convo-
lutional layers. Each of these networks
will have on the order of 104 trainable
variables. This results in a network with
two orders of magnitude fewer trainable
variables than our traditional approach
(as the QVC has on the order 102 pa-
rameters). The input into the classical dense layers will necessarily be flattened. The classical
convolutional layers are not intended to do the pixel analysis for the QVC. Because in an entangled
system, single rotations can change the overall wavefunction, nearby inputs and spatial relations are
important considerations for encoding. It is important to reiterate that this is not a dimensionality
reduction strategy. Our goal is not simply to reduce the information to fewer numbers, but rather to
have the neural network learn to convert the information into rotations that can represent the informa-
tion. Specifically, the input to the parameterized circuit will be the circuit shown in Figure 2 with the
rotations being the outputs of the neural network, i.e. if there are 4 qubits and 3 layers, then each layer
has 18 parameters and there are 3∗18 = 54 numbers the neural encoder outputs each one correspond-
ing to one rotation gate. To help elucidate the goal of the neural network encoder, consider a single
qubit with a single rotation gate. The one parameter of this gate, θ, can create a state which represents
two numbers, e.g. by rotating π/5 it creates the superposition Ψ = cos(π10)|0〉+ sin(π10)|1〉. The
second aspect we vary is the number of qubits, specifically we evaluate using 5, 10 and 15 qubits.
The reasoning behind this is straightforward: not all the information present in the pixels is relevant
for making informed actions, thus the amount of encoded information may not have to be the full
84 by 84 by 4 array. The computational expense of simulating quantum circuits also exponentially
increases with the number of qubits. 5, 10 and 15 qubits have representational power of 25, 210, 215

or 32, 1024, and 32,768 respectively. Thus, the 15 qubits are capable of representing the 84*84*4 =
28,224 numbers from the pixels. The third and final aspect is the output of the model. The output can
be directly evaluated from the quantum readout operators (after pooling) or a classical dense layer
can be attached at the end of the model. This idea has been presented before, but there was limited
empirical analysis and little theoretical explanation for the relative performances of the two [18].

Finally, the hyperparameters will be held constant across experiments in order to ensure an accurate
comparison. Our current set of hyperparameters are outlined here and although they are subject to
small changes and optimizations (as is important in machine learning), whatever is done to optimize
hyperparameters will be shared across models. These initial hyperparameters are inspired by those
used in [22] combined with modern knowledge of RL hyperparameters [1]. The replay buffer is size
1,000,000 with a minibatch size of 32. For ε greedy exploration the initial ε = 1.0 with a decay of
εdecay = 0.99, εmin = 0.01 and a reward discount factor of γ = 0.99. In addition, both models use
the Adam optimizer [16] with the same learning rate schedule, starting at 0.001 decaying linearly to
0.0001 over 10,000,000 frames.

With all 130 experiments, this work should provide substantial empirical insight into the use of
hybrid quantum classical models for complex reinforcement learning tasks. We hypothesize that
the convolutional encoders will perform superior to the dense encoders due to their ability to work
with spatial relations, and that all qubit numbers will be able to learn but the best performing will be
the 15 qubits because of the ability to represent all the input data (with fewer than 15 qubits, some
pixel information is inherently lost), and finally that the quantum output will perform better than the
dense. If the qubit encoding performs better with fewer qubits, that demonstrates there is substantial
unnecessary information in the input as the fewer qubits can only represent a small fraction of the
total input. Therefore, we predict C15Q to perform the best.

6

References
[1] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,

Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What matters in on-policy
reinforcement learning? a large-scale empirical study. arXiv preprint arXiv:2006.05990, 2020.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas,
Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510, 2019.

[3] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits as
machine learning models. Quantum Science and Technology, 4(4):043001, 2019.

[4] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

[5] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J Martinez, Jae Hyeon Yoo, Sergei V
Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin Halavati, Evan Peters, et al. Tensorflow quantum: A
software framework for quantum machine learning. arXiv preprint arXiv:2003.02989, 2020.

[8] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng Goan.
Variational quantum circuits for deep reinforcement learning. IEEE Access, 8:141007–141024, 2020.

[9] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature Physics,
15(12):1273–1278, 2019.

[10] Gavin E Crooks. Gradients of parameterized quantum gates using the parameter-shift rule and gate
decomposition. arXiv preprint arXiv:1905.13311, 2019.

[11] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks. Physical
Review A, 98(1):012324, 2018.

[12] Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. Quantum reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(5):1207–1220, 2008.

[13] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. An initialization strategy
for addressing barren plateaus in parametrized quantum circuits. Quantum, 3:214, 2019.

[14] Wei Hu et al. Empirical analysis of decision making of an ai agent on ibm’s 5q quantum computer. Natural
Science, 10(01):45, 2018.

[15] Sofiene Jerbi, Hendrik Poulsen Nautrup, Lea M Trenkwalder, Hans J Briegel, and Vedran Dunjko.
A framework for deep energy-based reinforcement learning with quantum speed-up. arXiv preprint
arXiv:1910.12760, 2019.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. Physical review letters,
121(4):040502, 2018.

[18] Owen Lockwood and Mei Si. Reinforcement learning with quantum variational circuit. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 16, pages
245–251, 2020.

[19] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational
hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.

[20] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren
plateaus in quantum neural network training landscapes. Nature communications, 9(1):1–6, 2018.

7

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

[23] Mikko Mottonen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa. Transformation of quantum
states using uniformly controlled rotations. arXiv preprint quant-ph/0407010, 2004.

[24] Arthur Pesah, M Cerezo, Samson Wang, Tyler Volkoff, Andrew T Sornborger, and Patrick J Coles. Absence
of barren plateaus in quantum convolutional neural networks. arXiv preprint arXiv:2011.02966, 2020.

[25] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

[26] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big data
classification. Physical review letters, 113(13):130503, 2014.

[27] Patrick Rebentrost, Thomas R Bromley, Christian Weedbrook, and Seth Lloyd. Quantum hopfield neural
network. Physical Review A, 98(4):042308, 2018.

[28] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic
gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.

[29] Vivek V Shende, Stephen S Bullock, and Igor L Markov. Synthesis of quantum-logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010, 2006.

[30] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM review, 41(2):303–332, 1999.

[31] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

[32] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entangling capability of parame-
terized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2(12):
1900070, 2019.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[34] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement learning.
In Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[35] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
arXiv preprint arXiv:1509.06461, 2015.

[36] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[37] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

8

	Introduction
	Background
	Reinforcement Learning
	Quantum Machine Learning
	Quantum Variational Circuits

	Approach
	Methodology
	Experimental Protocol

