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Abstract

Time series forecasting with additional spatial dependencies is one of the most
significant research problems for web information analysis. Recently, Graph Neural
Network (GNN) is widely used to better understand the hidden pattern in complex
graphs, such as traffic network. Properly capturing dynamics of traffic flows
requires the model to incorporate both information from nearby roads (spatial) and
past traffic flow records (temporal). Most existing frameworks model spatial and
temporal dependencies in two separate steps. However this type of framework
may suffer from complex network design, and information loss between the distict
steps. In this paper, we propose a unified spatial-temporal GNN framework that
captures both spatial and temporal dependencies in only one step. More specifically,
for each node in the graph, a unified neural network component is designed to
simultaneously extract information from its surrounding nodes and its past records,
which enables less information loss with fewer model parameters. We hypothesize
that our proposed method could potentially better generalize spatial-temporal data
in a more scalable way, compared to state-of-the-art (SOTA) methods.

1 Introduction

The spatial-temporal analytics is one of the most important techniques for web data mining, especially
in the context of time-series forecasting with geographical location data. This technique can largely
benefit research tasks related to smart city and political science. Such tasks include traffic flow
prediction [1], anomalous event detection [2], and local business recommender [3]. Here we expand
the case of traffic flow prediction and discuss its details. Estimating the dynamics traffic conditions is
a typical spatial-temporal analytics problem. The traffic data are recorded at fixed points in time and
at fixed locations on the road distributed in space.

More specifically, the traffic flow is tracked at each sensor with fixed frequencies in a sequential
manner, such as t, t+1, etc. Indeed, the traffic histories observed at neighboring locations at different
time stamps are not independent of each other. Hence, properly extracting both spatial and temporal
relationships out of the data is the key to address this problem. Therefore, it could be a major
contribution to the smart city research, if both the spatial and temporal dependencies can be captured
from the rich data properly.

Deep learning approaches have been widely used for various tasks for spatial-temporal modeling,
and have shown their superior performances compared to traditional time-series forecasting methods
such as Auto-Regressive Integrated Moving Average (ARIMA) model. However, most existing
frameworks are based on a two-step protocol: First, apply Graph Convolutional Networks (GCN)
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Figure 1: Comparisons between conventional two-step models and our proposed unified model.

module to extract the spatial dependencies out of the graph structured data; Then, incorporate a
Recurrent Neural Network (RNN) module [4] or a Convolutional Neural Network (CNN) module to
model the temporal dependencies [5], which lead to relatively complex network design.

However, frameworks described above have a number of shortcomings. Overall, even though this
two-step paradigm typically goes unquestioned, Lea et al. [6] argue that the model suffers from
the loss of valuable information between steps. Regarding the temporal dependency modeling,
RNN-based methods typically suffer from time-consuming propagations. In addition, gradient
vanishing/explosion may occur when the framework tries to model long sequences [7]. Moreover,
CNN-based methods normally require stack multiple 1D convolution layers to properly learn temporal
information from long sequences, which could lead to a very deep neural network structure [8]. Some
existing work uses a single network structure to model both dependencies, however they treat spatial
edges and temporal edges the same way, despite they are heterogeneous features [9, 10].

To address the aforementioned challenges in existing frameworks, we propose a Unified spatial-
TEmpoRal (UTTER) graph neural network for time series forecasting. The key idea is that if we
can construct a proper graph over sequences of data, which includes both spatial and temporal
information, then a single graph neural network could be established to capture both dependencies
simultaneously. Therefore the main contribution of this work is threefold:

• We design a subgraph construction module to sample the time-series data. Subgraphs
generated for each node contains both its structural neighborhood and its past records, which
essentially are its temporal neighborhood.

• We propose to use aggregation functions to learn the constructed subgraphs. This aggregation
function allows us to learn both the topological structure and the feature distributions from
each node’s neighborhood.

• We propose to evaluate our framework on real-world datasets compared to other SOTA
methods, including temporal-only models and spatial-temporal deep learning models.

2 Method

The primary idea behind our approach is that we convert the time-series forecasting problem to
a graph learning problem with spatial-temporal information encoded. First, We formally define
the time-series forecasting problem under the graph neural network settings. Second, we describe
a subgraph construction algorithm Third, we demonstrate the forward propagation algorithm to
generate the embeddings using UTTER given learnable parameters. Finally, we discuss how the
parameters in UTTER are learned using conventional backpropagation algorithms in the rest portion
of this section.

2.1 Problem Formulation

We formally define time-series forecasting under the graph neural network settings. Given the edge
connections between nodes, an undirected graph can be represented as G = (V, E), where V is a set
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Figure 2: Demonstration of constructing local spatial-temporal subgraph from data sequences. The
red/gree/blue dots represent target/1-hop/2-hop nodes respectively. Arrows point out the aggregation
directions. Green/blue arrows correspond to 1-hop/2-hop spatial adjacency, and red/pink arrows
correspond to direct/skip temporal adjacency. Parameters of the example is: No. of time steps: P = 5,
No. of spatial aggregations K = 2, skip time steps L = 1, and No. of skip connections M = 2.

of nodes with |V| = N , and E is a set of edges representing the connectivity between nodes. The
overall raw features of graph G is denoted by X ∈ RN×d where d is the dimension of the features.
Indeed, each graph G represents the relationships between nodes at each time step t. It is worth
noticing that we assume that the overall graph structure is static in this work, which means that it
doesn’t change over time.

A typical time-series forecasting problem aims to predict the value for future length-Q steps based on
previous P observations. As we mentioned before, data at each time step t is a graph G with feature
Xt. In other words, we map our training data X(t−P+1):t to forecasted values X(t+1):(t+Q) using
some forecast function f(·):

[X(t−P+1):t,G] f(·)−−→ [Y (t+1):(t+Q)] (1)

where X(t−P+1):t ∈ RP×N×d and Y (t+1):(t+Q) ∈ RQ×N .

2.2 spatial-Temporal Subgraph Sampling

Our proposed framework aims to model the spatial and temporal dependencies in a unified module.
Therefore, in each training example, multiple graph networks at distinct time steps need to be
considered. Inspired by GraphSage [11], we design our algorithm following a “Sample and Aggregate”
fashion. Here we describe the sampling method used to build each spatial-temporal subgraph example.
It is worth noting that the subgraph generated contains heterogeneous information, and we need a
learning algorithm to address this challenge later.

To model the relationships along space and time simultaneously, each example need to include a
target node with its nearby nodes to preserve the spatial relationships, also consecutive time steps
of neighborhood are demanded to preserve the temporal relationships. The subgraph construction
algorithm is presented in the supplemental materials, and is demonstrated in Fig. 2.

As shown in this figure, the first step is to sample the neighborhood for the target node at each
time step from the original network. In this work, a fixed-size set of neighborhood is sampled for
each node at each. There are two major benefits of applying this sampling method: First, it is more
computationally efficient to use a small set of nodes in each training example, instead of using the full
graph node set (as discussed in in Kipf et al. [12]). Next, a fixed-size set of samples guarantees the
same number of node dimensions of each training example. Thus, for v ∈ V , a set of neighborhood
nodes u ∈ V is sampled by a function N for K iterations. This also means that upto K-hop spatial
dependencies can be considered in our sampled subgraph. There are multiple sampling approaches,
such as rule-based sampling, uniform sampling and random degree node sampling [13]. For example,
at the sampling neighborhood phase of Fig. 2, it demonstrates a uniform sampling with K = 2 (2-hop
relationship), with sample size of 3 in each iteration.

The second step is to link spatial subgraphs between distinct time steps. One intuitive way is to
connect the target node with directed edges between different subgraphs. Notably, the directed edges
between time steps represent the asymmetry property of time, which means that subgraphs at a certain
moment is only impacted by its previous steps, not next moments. Since the topological structure of
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constructed subgraph contains both spatial and temporal information, the dependencies between the
target node and its spatial-temporal neighbor can be extracted in one step.

However, connecting only adjacent neighbors along time is not enough. Normally information from
1-hop neighbors are combined together using the aggregation function once. Therefore, a huge
number of layers is needed to model the temporal dependencies from the whole sequence under this
setting, which is not quite feasible. Inspired by ResNet [14], we add shortcut connections along time,
which turn the graph structure to its residual version regarding temporal dependencies modeling (see
line 5-7 at Alg. 2). Two additional parameters are defined for the ease of future demonstration: L and
M . More specifically, L represents the number of skip time steps, while M corresponds to the total
number of such skip connections. For instance, in Fig. 2, since the skip connection links t− 4 and
t− 2, which override t− 3, the number of skip time step here is L = 1. And we have a total number
of 2 skip connections in this subgraph, which makes M = 2. Suppose P,L,M are all integers, by
setting these parameters properly, we can have a relationship between these parameters:

P =M × (L+ 1) + 1 (2)

2.3 Forward Propagation Algorithm

Assuming all parameters in UTTER are fixed, now we demonstrate the forward propagation algorithm,
which aims to generate the node embedding for all nodes in the graph.

Here, we consider the spatial neighborhood by K-hop dependencies, and number of skip connections
M derived from Eq. 2. To model the node embedding vt including both spatial and temporal
information from itself P step ahead, a total number of K +M aggregation functions is needed.
Similarly, K +M weight matrices are desired to propagate information between different layers of
model. We denote the neighborhood aggregation function and weight matrices as AggNbhi and
Wi respectively, where i ∈ {1, · · · ,M + L}. Besides, as we mentioned in previous subsection, the
subgraph generated contains heterogeneous information. Here we refer AggNbhi to as the general
neighborhood aggregation function, and the specific function to use is demonstrated in Sec. 2.4.

We illustrate details about the proposed forward propagation algorithm for UTTER. Pseudocode
of this algorithm is demonstrated in Alg. 1. Inputs of the algorithm are the graph structure G, and
features at time t: {x(t−P+1):t

v ,∀v ∈ V}. As discussed before, we need to aggregate the node
representations for K +M times in order to use all information K hops away and P steps ahead.
This operation is demonstrated by the loop starting from Line 2. Inside this loop, every node in G is
iterated, and the neighborhood embedding h

(t−P+1):t
Ntmp,i

, is updated. More specifically, the neighbors
here refer to the spatial-temporal subgraph generated by GenSub algorithm. It is worth noticing
that in Line 5, the new embedding with regard to aggregating neighborhood information uses the
embedding updated from last iteration i − 1. Then, both the current representations of the target
node and its neighborhood are concatenated together, and fed into a fully connected (fc) layer with
activation function σ. Eventually, the output generated by the fc layer could be used as inputs then
for the next aggregation step.

2.4 Aggregator Architecture

Due to the nature of our spatial-temporal subgraph sampling algorithm (GenSub), there are some
basic requirements for proper aggregation functions to combine all neighborhood dependencies
together. First, the generated subgraph contains two distinct types of directed edges: spatial edges
and temporal edges. Therefore we should treat them differently during the aggregation. Second, the
aggregator should be permutation invariant, since neighbors of nodes do not have a certain order.
Additionally, it would be better if trainable parameters are preserved within this aggregation function,
because they can greatly increase the express power of our proposed framework.

Inspired by Graph Isomorphism Network (GIN) [15], we propose a multi-layer proceptron (MLP)
with two layers to achieve the best performance. Especially, we follow the GIN-0 protocol with
sum operation to aggregate the neigborhood information altogether, as it outperforms other methods,
such as mean aggregators or max aggregators. First, representations of target node and its spatial
neighborhood are added together to form a spatial embedding. Then, representations of target node
and its temporal neighborhood are added together to form a temporal embedding. Two embedding are
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Algorithm 1: Forward propagation algorithm
Input: Graph G; iterations K +M ; trainable matrix Wi, ∀i ∈ {1, · · · ,K +M}; input features

at time t {x(t−P+1):t
v ,∀v ∈ V}; activation function σ;

Output: spatial-temporal subgraph node representation at time t embt

1 h
(t−P+1):t
v,0 ← x

(t−P+1):t
v ,∀v ∈ V;

2 for i = 1, · · · , (K +M) do
/* iterate through all nodes in the graph */

3 for v ∈ V do
/* generate spatial-temporal subgraph */

4 Ntmp ← GenSub(v) ;
/* aggregate target node with neighborhood */

5 h
(t−P+1):t
Ntmp,i

← AggNbhi

(
{h(t−P+1):t

u,(i−1) , ∀u ∈ Ntmp}
)

;

6 h
(t−P+1):t
v,i ← σ

(
Wi ·Concat(h

(t−P+1):t

v,(i−1) ,h
(t−P+1):t
Ntmp,i

)
)

;

7 end
8 Normalize h

(t−P+1):t
v,i ;

9 end
10 embt

v ← ht
v,K+M ,∀v ∈ V;

11 ŷ
(t+1):(t+Q)
v ← σ

(
W fc · embt

v

)
concatenate together for each of the instances, and this concatenation is fed into the designed MLP
for information fusion. For the ease of demonstration, we denote the spatial neighborhood within the
graph to the target node v as N sp

tmp, while the temporal neighborhood as N te
tmp. Consequently, the

update rule for the target node is demonstrated as follows:

h
(t−P+1):i
v,i = MLP

(
concat(hsptmp,h

te
tmp)

)
(3)

where hsptmp corresponds to the spatial embedding, and htetmp. They are calculated as follows:

hsptmp = h
(t−P+1):i
v,(i−1) +

∑
u∈N sp

tmp

h
(t−P+1):i
u,(i−1) (4)

htetmp = h
(t−P+1):i
v,(i−1) +

∑
u∈N te

tmp

h
(t−P+1):i
u,(i−1) (5)

2.5 Learning Parameters of UTTER

After getting hidden representations of all nodes at time t, denoted as embt, we flatten this hidden
embeddings and feed it into two fully connected (fc) layers for prediction. Notice that the number of
output nodes for the fc layer is Q. Therefore, unlike the previous work which generate the output
at each time step recursively [4], predictions of UTTER are generated as a whole. We use Mean
Squared Error (MSE) as the training objective function. This objective function represents the average
squared differences between predictions for each target node at each time step to the ground truth.
Mathematically, this loss function is defined as:

L =
1

QN

Q∑
i=1

N∑
j=1

(
ŷ
(t+i)
j − y(t+i)

j

)2
(6)

3 Experiment Protocol

3.1 Datasets

This study considers time-series forecasting problem with additional spatial information in the
dataset. Therefore, two traffic network datasets (METR-LA & PEMS-BAY [4]), and a conflict dataset
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(ViEWS [16]) will be used here to evaluate our proposed method. We follow previous work, which
divides this dataset along time, and uses a ratio of 7:1:2 for train, validation and test to evaluate our
results.

• ViEWS2 This political science dataset contains PRIO-Grid level [17] spatial-temporal
conflict data concentrating on Africa, which includes records on monthly basis such as
number of fatalities and geographical information. There are a total number of 10, 677 grid
cells for Africa, and in this study we use data covering a period of 20 years, from January,
2000 to December, 2019.

• METR-LA3 This traffic dataset consists of spatial-temporal transportation data, e.g., traffic
speed, in Los Angeles county road network [18]. This record is updated every 5 minutes.
Following the experiment setting in Li et al. [4], we select 207 sensors in the LA County,
and in this study we use data covering a period of 4 months, from March 1, 2012 to June 30,
2012.

• PEMS-BAY4 This traffic dataset contains spatial-temporal transportation data for Bay Area.
Similar to METR-LA dataset, the data is recorded every 5 minutes. We select 325 sensors
from the road network, and we use data covering a period of 6 months, from January 1, 2017
to June 30, 2017.

3.2 Experiment Design

There are three major research questions that we want to address by the experiment:

- RQ1: What is the best sampling method to construct the spatial-temporal graph?
- RQ2: How effective our proposed framework is for spatial-temporal modeling?
- RQ3: Is proposed method efficient when it comes to large real-world applications?

To answer RQ1, essentially ablative studies are needed to compare the model performance using
different sampling methods, such as rule-based sampling, uniform sampling, and importance score-
based sampling. The observation of this research question may unveil how neighborhood information
may lead to learn the aggregation function properly.

Regarding RQ2, three evaluation metrics and two sets of baselines are designed to evaluate the
effectiveness of our proposed framework. More specifically, for evaluation metrics, we plan to
use MAE, RMSE and MAPE to evaluate our method, as they provide different insights into the
prediction accuracy, and are commonly used in previous research [8, 19]. Regarding benchmark
methods, the first set of baselines are classic time-series modeling methods, which only considers
temporal dependencies, e.g. ARIMA, CNN, and LSTM models. Comparing to these methods could
demonstrate whether the proposed method actually extract additional spatial information out of
data. The second set of baselines are SOTA deep learning based spatial-temporal models, such as
STGCN [8], Graph WaveNet [5], DCRNN [4]. By comparing to these methods, we can conclude if
the proposed method is effective enough for spatial-temporal modeling.

RQ3 will be addressed by comparing the efficiency among deep-learning-based spatial-temporal
models. In practice, the size of the spatial-temporal graph could be very large. For example, the
conflict dataset contains 10,677 nodes and 41,711 edges. In industrial applications such as social
network, the data scale is definitely even larger. Therefore we want to explore whether our proposed
method is efficient enough to model the spatial and temporal dependencies for a sequence of very
large graphs. More specifically, training time and inference time will be used to evaluate time
efficiency of our model, and No. of model parameters will be used to evaluate the space efficiency.
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