
Rendezvous between Robustness and Dataset Bias:
An empirical study

Prabhu Pradhan∗

Max Planck Institute for
Intelligent Systems (MPI-IS),

Tübingen, Germany.
ppradhan@tue.mpg.de

Ruchit Rawal∗
Netaji Subhas Institute
of Technology (NSIT),

New Delhi, India.
ruchitr.ec.17@nsit.net.in

Gopi Kishan
Indian Institute of

Technology Roorkee,
IIT-R, India.

gkishan@cs.iitr.ac.in

Abstract

We aim to shine a light on the effects of various techniques for perturbarial ro-
bustness on dataset-distribution bias (i.e. class imbalance). This relationship
between data-skewness and such performance-enhancing measures remains largely
unexplored. Deep learning models are seeing real-world deployment, hence it’s
crucial to gauge the reliability of neural networks since undetected (side)effects
of robustness-enhancement techniques on dataset-bias could be catastrophic. Our
focus will also be on efficient/compact models, since studies have shown them to
have relatively inferior generalization capability. We will evaluate methods for
model robustness (against common corruptions as well as adversarial perturbations)
by their effects on dataset bias through a variety of specialized metrics.

1 Introduction/Motivation

Fueled by large-scale annotated data and inexpensive compute, Deep Learning has witnessed unprece-
dented growth across a plethora of domains. Although extremely proficient at classifying patterns in
high-dimensional benchmark datasets, deep learning still fares poorly on real-world data (generally,
long-tailed distribution where some (head) classes have many examples, and most (i.e. tail) classes
have few). ones) (Wang, Ramanan, and Hebert, 2017). Feldman (2019) in their work demonstrated
that learning algorithms tend to "memorize" examples in the training-set when operated on long-tailed
data leading to degraded performance on the under-represented classes. This may prove detrimental
in scenarios that demand generalization on all the classes or in high-stakes real-world settings such as
self-driving cars and medical diagnostics where rare cases may be critical.

Machine learning algorithms are based on an implicit assumption that datapoints encountered at the
test time are governed by the same distribution as the one’s seen during training time. This assumption,
however, doesn’t hold merit in the wild. For example, a self-driving car’s training data might not
comprehend all possible weather and lighting conditions, bearing disastrous consequences when
deployed in the real world. Also, a lack of robustness against adversarial examples have been observed
(Goodfellow, Shlens, and Szegedy, 2015), making physical-world adversarial attacks on perception
systems feasible. Moreover, Ilyas et al. (2019) in their work demonstrated that adversarial examples
can be directly attributed to the presence of non-robust features i.e. features (derived from patterns in
the data distribution) that are highly predictive, yet brittle and (thus) incomprehensible to humans,
further validating an ever-pressing need to build an adversarially robust model. Consequently, model
robustness to different forms of image perturbations (noise, blurs, adversarial examples, stimulated
weather-artifacts, etc) has become a growing concern in machine learning research as well as AI
deployment in real-world applications.
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Most of the discussion around the utility of various robustness enhancement techniques is centered
on the trade-off between robustness to image perturbations and basic metrics such as accuracy.
However, this trade-off is futile in cases of long-tailed distribution (which are common in the
real world) as poor-performance on under-represented features would only cause minimal changes
to accuracy. Buolamwini and Gebru (2018) in their work observe that darker skin tones have a
high misclassification rate due to under-representation in facial analysis datasets, indicating poor
predictive performance on under-represented classes often corresponds to serious reliability and
fairness considerations (Hooker et al., 2020). Thus, understanding the relationship between model
robustness and dataset-bias is essential to the deployment of machine learning solutions.

In this work, we aim to tap into the effects (if any) of improving model robustness on the dataset-
distribution bias, and since basic metrics (such as accuracy) fail to give deeper insights (Buda, Maki,
and Mazurowski, 2018; Lipton and Steinhardt, 2019) we will use specialized metrics for imbalance
(F-1 score, balanced accuracy). Given the surge of interest in image perturbations, we focus our
study on robustness to common corruptions and adversarial-perturbation. Despite several papers on
robustness to diverse perturbations, robustness-transfer, etc, the relational dynamics between these
techniques and imbalance bias is currently absent.

The proposed contributions of this study are:

• Insights on the relational dynamics between robustness-enhancement methods and
Imbalance-bias (either mitigation or amplification). Since counter-productivity (if any)
of these methods on dataset-distribution bias remains unknown.

• To encompass a variety of contamination strategies, we use a variety of robustness schemes
i.e. against common corruptions as well as adversarial samples (specifically, universal
adversarial perturbations)

• To widen the scope and applicability of our work, we use specialized (bias-specific) metrics
(such as F1-score, balanced-accuracy) which is uncommon in the literature related to
robustness.

• We focus on compact networks such as SqueezeNet owing to their widespread adoption in
computer-constraint environments.

In section 2, we present current research efforts in these parallel topical domains.

2 Related Work and Literature Trends

Mitigating adverse effects of imbalance data is a well-studied problem in the machine learning litera-
ture. Popular methods to deal with class-imbalance are re-sampling (Buda, Maki, and Mazurowski,
2018; Byrd and Lipton, 2019), (which includes oversampling the minority class or undersampling
the majority class to equalize the class-count), and Re-weighting (Huang et al., 2016, 2019) (which
assigns a distinct set of weights to different classes. More recently, the focus has been to deal with
imbalance at the classifier’s level instead of data, giving rise to numerous methodologies to deal
with class-imbalance such as label-distribution sensitive loss functions (Cui et al., 2019; Cao et al.,
2019), learning rate schedules (Smith, 2015) , training routines (Izmailov et al., 2018), etc. Rawal
and Pradhan (2020a) in their work provide a comparative overview of these diverse methodologies.

As deep learning is increasingly applied to open-world perception problems in safety-critical domains
such as robotics and autonomous driving, its robustness properties become of paramount importance.
Researchers have tried to train robust Deep Neural Networks by training on corrupted images,
however, recent work by Geirhos et al. (2018) and Vasiljevic, Chakrabarti, and Shakhnarovich (2016)
has shown that Deep Neural Networks tend to memorize specific distortions shown during training
and fail to generalize on unseen distortions. ImageNet-C benchmark (Hendrycks and Dietterich, 2019)
proposed measuring performance on unseen corruptions as a yardstick for the model’s generalization
capability. Gaussian noise, Pepper noise, Glass blur, Zoom blur, Pixelation, JPEG compression
are a few examples of the common corruptions present in ImageNet-C that manifest themselves in
real-world settings via electronic noise, lighting conditions, bit errors, lossy-compression, etc.

In addition to these standard corruptions, we also have their worst-case scenarios- commonly known
as Adversarial perturbations which when added to an input image, cause the network output to change
drastically without making perceptible changes to the input image. While per-instance adversarial
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perturbation varies for different samples in a dataset, there exist image-agnostic perturbations called
universal adversarial perturbations (UAPs) as introduced by Moosavi-Dezfooli et al. (2017), that
can fool state-of-the-art (SOTA) recognition models on most natural images with high probability.
These UAPs are more interesting than input-specific (“per-image”) ones as UAPs reveal systemic
vulnerabilities that models are sensitive to regardless of the input and they will be the focus of
our study. UAPs are more likely to transfer effectively between models that learn similar features
(Carlini and Wagner, 2017; Fawzi, Moosavi-Dezfooli, and Frossard, 2016). An analysis of universal
perturbation and their properties is provided by Dezfooli et al. (2018); Chaubey et al. (2020).

Taori et al. (2020) in their work observed that though much progress has been made in building models
that are robust to synthetic distributions-shifts (common-corruptions, adversarial perturbations, etc),
this robustness doesn’t necessarily transfer to distribution shifts that arise naturally from real-data
without any synthetic modification. They argue that since models are likely to encounter natural
distribution shifts when deployed in the wild, new algorithmic ideas, as well as a better understanding
of how training data affects the robustness, is the need of the hour. Independently, Hooker et al. (2020)
in their recent work illustrated that several quantization and pruning techniques disproportionately
affect performance on under-represented features in long-tailed scenarios.

3 Methodology and Experimental Protocol

To gauge the effects of robustness enhancing techniques on a model’s ability to generalize in the
presence of dataset bias (class imbalance), we evaluate various imbalance-focused metrics namely
balanced accuracy, F1 score on a diverse set of deep neural networks.

We aim to perform a comparative study of various robustness-enhancing techniques (along with the
corresponding baselines) for operating on skewed datasets that are suffering from class-imbalance
problems. Extensive experiments are conducted on artificially induced long-tailed CIFAR100
(Krizhevsky, 2009), and Droughtwatch (Hobbs and Svetlichnaya, 2020) (a real-world imbalanced
dataset). The experiments are repeated multiple times by gradually increasing the degree of imbal-
ance in the datasets to better understand the effects of robustness-enhancing techniques on model’s
generalization capability in presence of data-skewness.

• Base Networks: We will perform our experiments on distinct base models. We begin with a
vanilla Convolutional Neural Network and a standard ResNet-50 (He et al., 2016). Efficient
and compact networks (arguably) have inferior generalization capabilities, (Brutzkus and
Globerson, 2019; Yehudai and Shamir, 2019) but are gaining popularity due to deployability.
A rigorous investigation of the effects of robustness enhancement on efficient networks in
presence of skewed datasets is vital to deploying trustworthy AI solutions, thus we also will
evaluate a widely popular compact networks viz. SqueezeNet (Iandola et al., 2016).

• Datasets: We perform comprehensive experiments on Droughtwatch (Hobbs and Svetlich-
naya, 2020) and artificially induced long-tailed CIFAR100 (Krizhevsky, 2009) dataset. The

Figure 1: Proposed Levels of Distribution Bias in CIFAR-100; Training samples per class in artificially
induced long-tailed CIFAR-100 with increasing degree of imbalance
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dataset is highly imbalanced (roughly 60% of the data gathered is of class 0, classes 1 and 2
have 15% each, and the remaining 10% is class 3).
Cui et al. (2019) constructed artificially induced long-tailed CIFAR100 dataset by reducing
training-samples from each class as per an exponential function n = niλ

i where i denotes
the class-index, ni refers to original samples in the class and λ ∈ (0, 1). To better understand
the intricacies of robustness-enhancement and data-skewness we repeat experiments for
three levels of distribution bias - Balanced, Linear Imbalance and Long-Tailed distribution
(see Figure 1).
• Robustness Enhancement Techniques: Building models that are satisfactorily robust as

well as generalize well on all the inherent classes is essential to the deployment of high
stakes real-world machine learning solutions, however, the complex interactions between
robustness and dataset biases such as class-imbalance have largely been left neglected.
Rawal and Pradhan (2020b) in their work observed that Augmix (Hendrycks et al., 2020b),
a state-of-the-art robustness enhancement technique on common corruptions, tends to
deteriorate the model’s performance on imbalance focused-metrics, however, the results were
limited and carried out for a different evaluation. We are inspired to explore further in this
area, and conduct a comprehensive study, by evaluating numerous robustness-enhancement
techniques for multiple models on two datasets at varied imbalance levels. Additionally,
we also seek to evaluate the effects of robustness to universal adversarial perturbations on
class-imbalance metrics, which to the best of our knowledge is still unexplored.

1. Common Corruption: We will evaluate various state-of-the-art robustness to common
corruption techniques. Firstly we have Augmix (Hendrycks et al., 2020b), a highly
modular data augmentation technique that employs chains of layered transformations,
stochastically sampling from a predefined pool of augmentations. The final augmented
image consists of a weighted sum across various augmentation chains and the original
image. Secondly, we have DeepAugment+Augmix (Hendrycks et al., 2020a), it uses
image-to-image neural networks for data augmentations and can be easily integrated
with other augmentation techniques (such as Augmix in our case). Lastly, we have
Adversarial Noise Training (ANT) (Rusak et al., 2020) which trains a classifier jointly
with a noise generator neural network. The goal of the noise generator is to produce
spatially uncorrelated noise that when added to inputs, can fool a given classifier. The
ANT scheme ensures the classifier becomes robust to adversarial noise as well as
common corruption.

2. Adversarial Corruption: We will evaluate on two robustness enhancement methods to
Universal adversarial perturbations(UAPs). Firstly, we will apply Universal Adversarial
Training as proposed by Shafahi et al. (2020) which increases adversarial robustness by
modelling the training process as a two-player min-max game where the minimization is
over the target model parameters, and the maximization is over the universal adversarial
perturbation. Secondly, we will use the idea of ‘shared adversarial training’ as proposed
by Mummadi, Brox, and Metzen (2019) to handle the trade-off between enhanced
robustness against UAPs vs. reduced performance on clean data samples. We will
study these methods with a focus on imbalance bias of clean datasets.

• Training Routine: Our training setup consists of Adam Optimizer and Cross-Entropy loss.
Standard data augmentation e.g. Random Horizontal-Flips, Random Vertical-Flips, and
Random Rotation are also applied after normalizing the data. Additionally, we employ
Cyclical Learning Rates (Smith, 2015), a learning rate routine that oscillates between a
range of values (contrary to the conventional wisdom of step-wise decreasing learning rate
as training progresses) to streamlines hyperparameter selection. Cyclical Learning Rates
also ensures quick traversals over saddle points and sharp minima.

• Result: In this section, we present an outline of possible results (see Table 1). For a particular
dataset, there will be two tables, each reporting a unique imbalance-focused metric namely
Balanced accuracy & F-1 score. These experiments are repeated over a variety of imbalance-
levels (Balanced, Linear, heavy-tailed versions) to meticulously examine the interactions
between robustness-enhancement and performance on varying degree of distribution bias.
In reference to Table 1- Different models in our experiment would correspond to distinct
Deep Neural Network architecture families for eg. ResNet-50 and SqueezeNet, specific
insights can then be drawn regarding effect of various robustness enhancement techniques
(eg. AugMix, ANT) across a varied degree of imbalance (Balanced, Linear, Long-Tails).
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Table 1: CIFAR-100 results with different models (I & II) and robustness-methods (a & b)

Bal. Acc. Level of distribution bias

Balanced (Linear) Imbalance Long-Tailed

Model-I - - -

Model I a - - -

Model I b - - -

Model II - - -

Model II a - - -

Model II b - - -

F1 Score Level of distribution bias

Balanced (Linear) Imbalance Long-Tailed

Model-I - - -

Model I a - - -

Model I b - - -

Model II - - -

Model II a - - -

Model II b - - -
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