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Abstract

If faced with new domains or environments, a standard strategy is to adapt the
parameters of a model trained on one domain such that it performs well on the new
domain. Here we introduce Generalized Invariant Risk Minimization (G-IRM), a
technique that takes a pre-specified adaptation mechanism and aims to find invariant
representations that (a) perform well across multiple different training environments
and (b) cannot be improved through adaptation to individual environments. G-
IRM thereby generalizes ideas put forward by Invariant Risk Minimization (IRM)
and allows us to directly compare the performance of invariant representations
with adapted representations on an equal footing, i.e., with respect to the same
adaptation mechanism. We propose a framework to test the hypotheses that (i)
G-IRM outperforms IRM, (ii) G-IRM outperforms Empirical Risk Minimization
(ERM) and (iii) that more powerful adaptation mechanisms lead to better G-IRM
performance. Such a relationship would provide a novel and systematic way to
design regularizers for invariant representation learning and has the potential to
scale Invariant Risk Minimization towards real world datasets.

1 Introduction

The ability to learn representations that generalize to changes of the data distribution is a key challenge
in both domain adaptation and domain generalization. Recently, Invariant risk minimization (IRM; 1)
was proposed to learn representations that are simultaneously optimal across all training domains.
However, to the best of our knowledge, no efforts succeeded in scaling the original formulation of IRM
to real-world datasets. In fact, Gulrajani and Lopez-Paz (5) showed that IRM does not significantly
outperform empirical risk minimization (ERM) in absence of a model selection strategy. Recently,
Rosenfeld et al. (22) discussed theoretical limitations of standard IRM especially in non-linear
problems.

The reason behind this failure might be rooted in the particular formulation of IRM that relies only on
the last linear readout. Adapting the last layer alone has been demonstrated to be insufficient in many
transfer learning settings (14). More importantly, supervised domain adaptation (SDA; 23) techniques
typically adapt parameters along the network depth because distribution shifts in real-world datasets
cause distribution shifts throughout the network (24).

To address this problem, we here propose Generalized IRM (G-IRM) which takes a pre-specified
adaptation mechanism and aims to find representations that are simultaneously optimal across the
training environments, meaning the representations cannot be improved on individual domains
using the given adaptation mechanism. This lets us utilize the aforementioned domain adaptation
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mechanisms as regularizers for invariant representation learning, and lets us probe the relationship
between the adaptation mechanisms and their corresponding invariant representations.

Our contribution is two-fold: First, we propose G-IRM as a new member in the family of invariant
representation learning techniques. Second, we describe an evaluation protocol with multiple
benchmark problems for G-IRM and we investigate whether mechanisms from established domain
adaptation techniques could be leveraged for obtaining better representations (which we hypothesize
to be possible). If true, this would enable a principled way to design new invariant representation
learning techniques, provide a novel link between adaptive and invariant representation learning, and
potentially enable scaling of G-IRM to practically relevant large-scale problems.

Related work. Alternatives for domain generalization (DG) algorithms beyond IRM include risk
extrapolation (REx; 16) as a practical way and extension of min-max optimization across environ-
ments. Follow up work considered variations of the regularizer, e.g. using score matching (SIL; 11).
Zhao et al. (26) explore limitations of ERM for generalization and trade-offs in domain-invariant
representation learning from an information-theoretic perspective, including generalization bounds
based on domain mismatch. Importantly, Gulrajani and Lopez-Paz (5) show that in absence of
dedicated (unsupervised) strategies for hyperparameter tuning, ERM outperforms all existing DG
methods. Rosenfeld et al. (22) discuss theoretical limitations of IRM, particularly in non-linear
problems.

2 Methodology

We are given data sets De = {xi, yi}ne
i=1 from multiple training environments e ∈ Et and (unknown)

test environments e ∈ E\Et. Consider a model hσ,αe
: X 7→ Y with shared parameters σ and

adaptation parameters αe. The adaptation parameters are allowed to adapt to each environment. We
train the model parameters in three different ways:

Empirical Risk Minimization (ERM). In the baseline case we do not adapt αe to each en-
vironment, but instead train σ and α on the standard weighted empirical risk Re(σ,α) =
Ex,y∼De

[`cross-entropy(hσ,α(x), y)] across training environments,

min
σ,α

∑
e∈Et

λeRe(σ,α) (1)

We consider both constant weightings λe = 1 or treat them as tunable hyperparameters for a better
baseline performance (cf. Appendix for further motivation).

Supervised Domain Adaptation (SDA). We measure the properties of different adaptation mech-
anisms by the improvement we can obtain by finetuning the adaptation parameters on each train
and test environment. We first train σ and a shared α as in ERM, obtaining an optimal parameter
configuration σ∗,α∗. We then adapt the network by introducing environment-specific adaptation
parameters αe on each test environment:

min
σ,α

∑
e∈Et

λeRe(σ,α), min
αe

Re(σ
∗,αe). (2)

We alternatively consider a variant where we jointly train the shared parameters and adapt the
adaptation parameters to each environment:

min
σ,α1,...,αE

∑
e∈Et

λeRe(σ,αe). (3)

Generalized Invariant Risk Minimization (G-IRM). In G-IRM we do not adapt α to each
environment, but instead aim to to find model parameters σ and α such that α is simultaneously
optimal for each individual environment. This leads to the optimization problem

min
σ,α

∑
e∈Et

Re(σ,α) s.t. α ∈ argmin
α′

Re(σ,α
′) (4)
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Figure 1: (i) G-IRM with affine adaptation ensures an invariant alignment between the image of f and the
pre-image of g. (ii) The alignment is possible with disjunct sets of features across environments, or (iii) yield
directly domain invariant representations (iii). (iv) Adaptation mechanisms: A1 reproduces IRM, A2 tunes affine
parameters after each convolutional block, and A3 tunes residual adapters.

which we relax by using a gradient regularizer similar to Arjovsky et al. (1), yielding

min
σ,α

∑
e∈Et

(
Re(σ,α) + λ‖∇α′|α′=αRe(σ,α

′)‖22
)
. (5)

Note that G-IRM reduces to IRM (1) if the adaptation parameters α represent a linear readout at the
end of the network.

2.1 Generalizing IRM allows to learn higher order invariances at fixed model capacity

We consider three families of adaptation mechanisms, as outlined in Fig. 1 (iv): We start with
fine-tuning the last layer weights, which makes G-IRM equivalent to IRM (Fig. 1 (iv), A1). Given
the success of mechanisms for affine adaptation layers, we include this as the second mechanism
(Fig. 1 (iv), A2). Affine adaptation layers are inserted after each convolutional layer except for the
final output to allow for distributed adaptation. Finally, we consider residual adapters similar to the
structure proposed by Rebuffi et al. (21): In parallel to each convolutional layer, we add a set of
additional adaptation parameters (Fig. 1 (iv), A3). For A3, we consider applying the adaptive weight
across input or output channels only, across kernel dimensions only, or across all dimensions.

These adaptation mechanisms induce different biases regarding the network’s invariance properties:
Consider an example of an adaptation mechanism T embedded between two learnable network
modules f ,g. G-IRM learns an invariant mapping for aligning the image of f to the pre-image of g
irrespective of the training environment (Fig. 1(i)). In particular, at its optimum, we will be unable to
find a T which improves the risk on any of the training environments. We note that this scheme alone
is not sufficient to guarantee that the representation is invariant: Both the (non-invariant) alignment
of multiple domains in Fig. 1(ii) and the invariant representations depicted in Fig. 1(iii) are valid
solutions in G-IRM. We however expect that solutions as shown Fig. 1(ii) are less practically relevant
when objective functions like the cross-entropy are employed, and classifiers are not perfect.

2.2 Metrics

We focus on four types of metrics. First, we directly consider the test accuracies obtained by all
models (ERM, G-IRM, SDA) on all training and test domains. We also report the test accuracies
after adaptation of the (fixed) adaptation parameters after G-IRM training as a measure of invariance.
As a summary statistic, we report the worst case test error. Second, the regularizer of G-IRM
indicates the quality (invariance) of the representation. A value closer to zero indicates that the
adaptation parameters cannot improve the loss on any of the target domains, indicating invariance.
We will consider the value of the regularizer for any mechanism A1–A3 for both model selection
and further analysis. Third, we consider options for comparing representations obtained by the three
algorithms. Kornblith et al. (13) introduced a new similarity index, Centered Kernel Alignment (CKA),
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and showed that it can measure meaningful (higher order) similarities between high dimensional
representations in DNNs; we consider the variant using a linear or RBF kernel. Using CKA, we
process images with the same label, but from different environments. We compare representations in
the ERM-trained models (expectation: low similarity), in the G-IRM-trained model (cf. Fig. 1, either
(ii) low or (iii) high similarity is possible), and among the two models (expectation: low similarity).
Finally, we quantify the invariance of the representations learned by domain and class classifiers: At
multiple network depths, we extract features, and report cross-validated decoding performance for
both classifiers, using logistic regression or support vector classifiers.

3 Experimentation Protocol

Figure 2
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We investigate three hypotheses: First, we will test H1: G-IRM with the
optimal mechanism A∗ performs better than IRM, against H0: G-IRM
and IRM obtain the same performance. Second, we consider H ′1: G-IRM
with the optimal mechanism A∗ performs better than ERM, against H ′0:
G-IRM and ERM obtain the same performance. In contrast to Gulrajani and
Lopez-Paz (5), we will use selection strategies which are tuned to G-IRM,
exploiting a potential correlation between the gradient penalty and the test
accuracy (Fig. 2). For the special case of IRM, we will challenge the claims
by (16)? ) Finally, we address our core hypothesis H ′′1 : For a given model
architecture and dataset, the performance of adaptation mechanism Aj is
positively correlated with the worst case test accuracy of G-IRM (Fig. 3),
againstH ′′0 : there are no correlations between SDA performance and G-IRM
performance.

For each experiment, we select a dataset and a baseline network structure
depending on the overall data complexity. We start with synthetic toy data,
then proceed with variants of Colored MNIST(1), extended by including
simultaneous variations of background and foreground (cf. Supplement).
We then add other small digit datasets like SVHN (19), Synth Digits (4) and
USPS (10), and consider augmented versions of the datasets (MNIST-C, 18).
Eventually, we consider more naturalistic images like PACS (17), VLCS (3), ImageNet-C (7) and
ImageNet-R (8).

We consider the splits into shared and adaptation parameters outlined in §2.1. We train shared
parameters using ERM and G-IRM, and shared and adapted parameters using SDA. Performance is
evaluated on all environments using metrics outlined in § 2.2.

Baseline and Variations. For H1, our most important baseline is IRM; for H ′1, we compare
performance mainly against ERM. We also report performances of REx (16), SIL (11) and other
methods implemented in DomainBed (5). Adaptation mechanisms A2,A3 can be varied by only
inserting adaptation modules in certain network layers; in addition, we can combine approaches A1,
A2, A3. Finally, we will closer study alternative relaxations (and approximations) of G-IRM if we
encounter optimization issues.

Architectures. Based on the complexity of tasks, we choose the appropriate model from the
following discussed network architectures: First, we use the fully connected network used by Arjovsky
et al. (1) with increasing number of layers for synthetic data and Colored MNIST. Each hidden layer is
followed by a ReLU or ELU nonlinearity and we do not use any batch/group normalization. Second,
we use Convolutional Networks with four, six or eight convolutional layers and these convolutional
layers (kernel size 3 or 5) are followed by fully connected layers with ReLU or ELU nonlinearity. The
number of channels for each convolution is of the form 2x where x ∈ {5, 10}. The number of hidden
units in the fully connected layer of both the discussed architectures is treated as a hyperparameter
and varies from {25, 210} We optionally use Batch or Group normalization for better convergence.
Finally, on real-world image data we use well-known architectures widely used and implemented in
torchvision (20), e.g. AlexNet (15), residual networks (ResNet18 and ResNet50; 6) and DenseNet121
(9). We will run a more limited hyperparameter sweep on these larger architectures.
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Figure 4: Data generating processes for (i) anti-causal prediction and (ii) causal prediction.

Synthetic Data Distributions. We now consider two controlled experiments with a fully known
data generating process, using a student-teacher setup (Fig. 4). The teacher is a randomly initialized
DNN serving as the data distribution. First, we use the teacher to define p(x|y, e). We specify
a correlation between y and e, sample from the model, and aim to infer the original class labels,
yielding an inference problem in the anti-causal direction (25). Second, we build the reverse setup to
construct a classification problem in the causal direction, starting from x and e, and parametrizing
p(y|x, e) with the teacher. Again, we aim to infer the class label from x. In both cases, in contrast to
real datasets, we can ensure that the data complexity and environment-specific process matches our
model, and can additionally study cases where the student is over- or under-parametrized.

G-IRM penalty [100, 1010]
learning rate [10−2, 10−5]
weight decay [10−2, 10−6]
hidden dim [25, 28]
Tab. 2: Log-uniform sampling

Hyperparameters Selection. We focus on classification tasks
and in all cases optimize the negative log-likelihood, using
(Stochastic) Gradient Descent (SGD; 2) or Adam (12); we use
batch training for small scale experiments, and batch sizes in
{32, 64, . . . , 256}. All hyperparameters are tuned with random
search (log-uniform, cf. Table 2). The most critical hyperparame-
ter is the G-IRM penalty coefficient. We follow a linear warmup stategy (1), sampling the number of
warmup iterations uniformly between 10% and 90% of the total training iterations.

We explore four model selection strategies (S1,S2, S3a, S3b): First, we estimate the topline perfor-
mance by selecting hyperparameters that minimize the maximal error across all environments (S1;
1, 16). Second, we consider different splits of the training datasets into training and validation subsets
and select models based on the min-max error across all training domains (S2; cf. 5).

Importantly, S1 is not applicable in practice, while S2 potentially provides an unfair advantage to
ERM, which is also reflected in the results obtained by Gulrajani and Lopez-Paz (5). We therefore
finally explore selection strategies more tuned to the G-IRM algorithm: We either select based on
highest training accuracy s.t. to sufficiently low gradient penality (S3a), or select based on low
gradient penality s.t. sufficiently high training accuracy (S3b). In both cases, we first subselect based
on the sufficient criterion by considering all experiments in the lower quantile of this metric, and then
greedily pick hyperparameters according to the primary metric.

Ablative studies. To better stress the empirical difference between IRM and G-IRM and to inves-
tigate H1, we will always run ablative studies where we (i) test the novel mechanisms A2, A3 in
isolation, (ii) test the adaptation mechanisms A2, A3 in conjuction with A1 and (iii) contrast this to
IRM (A1) only. Besides, we extensively test different options for possible adaptation mechanisms
and model architectures, as outlined before.

Evaluation and Results. Evidence in favor of H1 implies that the choice of adaptation mechanism
matters in the practical application of G-IRM. Leveraging CKA, the different penalty terms for
A1–A3, and decoding performance of the domain classifier across the representational hierarchy of
the DNN allows to study differences in the learned representations: G-IRM could potentially yield
more invariant intermediate representations (Fig. 1) than IRM, where only invariance w.r.t. to the last
layer is required. If we fail to reject H0, this implies that the original IRM formulation is sufficient
for learning invariant representations, extending the original claim (1).

Evidence in favor of H ′1 implies that the adaptation parameters used as regularizer enforces the
learned feature representations to be invariant in a way applicable in practical settings, in constrast to
the results in favor for H ′0 by Gulrajani and Lopez-Paz (5).

Evidence in favor of H ′′1 suggests that good adaptation techniques can be used as regularizers for
learning invariant representations. For distributed adaptation (A2, A3), the CKA similarity index for
the G-IRM learned representations will be high both within and at the end of the network. Failure to
reject H ′′0 implies that invariant representations can be principally obtained without special choices
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for the adaptation method (in conjunction with H0 and H ′1) or, indicate that further work is needed
on domain adaptation techniques beyond IRM (conjunction with H ′1).

4 Conclusion

We outlined a novel experimental framework for investigating a possible link between domain
adaptation and invariant representation learning. Our proposed algorithm, G-IRM, allows to leverage
adaptation mechanisms as a regularizer for obtaining invariant representations.

On a broad variety of datasets, we explore the relationship between performance of an adaptation
technique for supervised domain adaptation and G-IRM. Evidence for such a link will allow a rigorous
new way to design algorithms for invariant representation learning, and scale IRM to real-world
data, while a negative result will motivate more work on different families of domain generalization
techniques beyond IRM.
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