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Abstract

Recent advances in reinforcement learning with social agents have allowed us to
achieve human-level performance on some interaction tasks. However, most inter-
active scenarios do not have performance alone as an end-goal; instead, the social
impact of these agents when interacting with humans is as important and, in most
cases, never explored properly. This preregistration study focuses on providing a
novel learning mechanism based on a rivalry social impact. Our scenario explores
different reinforcement learning-based agents playing a competitive card game
against a human player. Our goal is to investigate if we can change the assessment
of these agents from a human perspective by changing the agent‘s playing style
based on a predicted and synthesized rivalry between agents and humans.

1 Introduction

The social aspects of interaction are usually dimmed when optimizing an artificial agent through
reinforcement learning [1]. Most of the training loop must be done in an offline manner [1], or focuses
on optimizing objective metrics that do not directly involve social aspects, such as planners [2] or
human annotation feedback [3]. Most of the common success metrics in this regard are related to
solving the task in fewer steps, reducing predicted values, or achieving some predefined intermediate
objective goals. When the interaction with humans is the main goal, such agents are evaluated mostly
based on their objective performance [2]. In the few examples where humans are present in the
loop, the success measures are mostly related to the embodied interaction [4, 5], and not underlying
decision-making process that these agents learned.

A scenario where these problems arise is in competitive interaction. In a competitive game scenario,
an agent can learn through reinforcement learning how to adapt towards its opponents [6], even when
these opponents are humans [7]. However, it is extremely difficult to measure the social aspects of
this interaction, without relying on typical human-robot or human-computer interaction schemes
[8]. Although providing important insight on some social aspects, these evaluations usually focus on
controlled lab-scenarios [9], production of different robotic behavior [10], and dialogue [11]; this in
turn neglects exploring how the agents’ various learning strategies influence their explicit behaviour
and interaction with humans [12], despite it being one of their most important characteristics. This
can be evidenced even in the new area of explainable reinforcement learning [13, 14].

In this preregistration study, we address the problem of including social aspects in the learning
strategies of artificial agents in a competitive scenario. We propose an objective human-centered
metric, based on rivalry [15], to compose the reward function of the agents. Rivalry is a subjective
social relationship arising between two actors based on the competitive characteristics of an individual,
as well as the increasing stakes and psychological involvement in the situation [16]. We chose rivalry
as it showcases the competing relation between individuals, which often affects their motivation and
performance during game play [16, 17]. Our scenario will be evaluated using the multiplayer Chef‘s
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Hat Card game and will include artificial agents based on Deep Q-Learning (DQL) and Proximal
Policy Optimization (PPO). We separate our scenario into two steps: first we will map the original
behavior of such algorithms when playing the game using the novel rivalry score. Second, we predict
this metric by having agents identifying human rivals on inference-time, and use this information to
update their behavior. To validate the behavior update, and to have a baseline for learning it with the
agents, several humans will play the game against the agents and based on a series of explicit and
implicit metrics, we will calculate the level of rivalry that each agent yields.

In this paper, we formalize these problems by proposing the following hypotheses:

• Agents trained with different RL strategies yield distinct rivalry when playing the chef‘s hat
card game against humans.

• Agents trained with a predicted rivalry as a part of their reward function can modulate
human responses on a rivalry scale.

In the remainder of this paper, we detail our motivation, methods, and our experimental setup, and
present a short discussion on the possible impact that our research has on explainable reinforcement
learning and related fields.

2 Related Work

Reinforcement learning in competitive games. In the late 1990ies, several researchers tried to
identify the impact of the Deep Blue artificial chess player [18] on the development of artificial
intelligence [19, 20]. They all argue that beyond the technical challenge of beating a human, there is
an underlying impact on how this agent affects the opponents’ behavior during the entire interaction.
Over time, these investigations were let aside by the mainstream community, which focused mostly
on solving more complex problems. This vision is reflected by the recent development of deep
reinforcement learning and the research on training artificial agents to play competitive games that
have flourished since [21]. AlphaGo [22] demonstrated that these agents can play competitively
against humans in very complex games. The recent development of agents that play the StarCraft
computer game [7] pushes these boundaries even further. These agents learn how to adapt to dynamic
environments, how to map hypercomplex states and actions, and how to learn new strategies [23].
Most of the studies, however, focus on the final goal of these agents: how to be competitive against
humans. None of them focus on understanding the impact that such agents had on human opponents.

Figure 1: Illustration of the highest Q-Values of an agent trained with DQL and another trained with
PPO, playing seven games of the Chef’s Hat Card game.

DQL and PPO Playing Behavior on the Chef’s Hat Card Game. In the same development wave,
it was recently investigated the design and development of reinforcement learning agents to play the
four players Chef’s Hat competitive card game [24]. These agents were based on Deep Q-Learning
(DQL) [25] and Proximal Policy Optimization (PPO) [26], and achieved success in learning how
to win the game in different tasks: playing against random agents, self-play, and online adaptation
towards the opponents. It was observed, however, that these agents present different behavior during
game-play while maintaining a similar objective performance measured by overall wins over a series
of games. By observing the Q-values of each agent during an entire match, it is possible to see in
Figure 1 that the DQL agent usually presents higher Q-values at the end of a game, while the PPO
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agent presents them at the beginning of the game, but with lower intensity. This led to a general
understanding that, although both effective, these agents learned different strategies. What has not yet
been done is to measure the social impact that such strategies can have when the agents play against
humans.

Human-centric Analysis of RL. When analyzing the impact of artificial agents on humans, there
are now decades of studies focused on Human-Robot [27] and Human-Computer [28] Interaction
(HRI and HCI respectively). Most of these studies, however, focus on optimizing RL agents to solve
a specific task, even social ones, without having much feedback on the social aspects of the task as
part of their learning mechanism. Such agents are usually designed to learn an expected outcome,
such as improving engagement [4], or to imitate humans [6]. None of the most recent studies focus
on extracting the intrinsic behavior bias that different learning schemes apply to the final agent.

Rivalry in Competitive Games. One way to explain the behavior of an agent as a factor of its
learning strategy is to measure its impact on humans. There exist several social metrics that take into
consideration the interaction [29], but most of them focus on the subjective impressions humans have
on the embodied interaction [30], the subjective quality of the interaction [31] and/or the efficiency
of the interaction to solve a task [32]. In a competitive game, however, one of the most informative
metrics is the rivalry [15] between the human and the agents. Rivalry is defined as a competitive
relation between individuals or groups that is characterized by the subjective importance placed upon
competitive outcomes (i.e., win or lose) independent of the objective characteristics of the situation
(e.g., tangible stakes) [16, 17]. A proposed theoretical model of rivalry suggests the antecedents
of rivalry as similarity factors, competitiveness, and relative performance of the agents [16]. The
presence of a rivalry effect in turn affects the motivation of the individual and their performance [17].
We aim to evaluate how different agents affect the user’s perception of the agents, and the user’s
performance due to the increased competitiveness and rivalry effects. Figure 2 shows the theoretical
model we follow for estimating rivalry, and its effect on motivation and performance.

Figure 2: The theoretical model of rivalry used for our new rivalry metric proposition, based on the
framework proposed by Kilduff et al. [16].

In competitive games, rivalry is a central concept that directly effects the opponent’s behavior through
their motivation in play. In human-to-human scenarios and economics, a healthy rivalry is considered
to be an important factor that can positively affect the performance of opponents; while in other
situations, it can also contribute to unnecessary risk-taking behavior. In human-in-the-loop online
learning scenarios for competitive games, the absence of rivalry or competitiveness might result in
the human opponent to lose motivation to play the game and show sub-optimal performance during
game-play. The agents who are learning actively from the human, are bound to learn from this bad
performance input which in turn would result in sub-optimal learning. By introducing the notion of
rivalry, we aim to evaluate how different agents affect the user perception of the agents and in turn
have an effect on user performance based on the increased competitiveness and rivalry effects.

3 Methodology and Experimental Protocol

Our evaluation setup includes two formal experiments to address each of our hypothesis: the first
one, to identify the individual aspects of rivalry between a human and the agents, and to create the
fundamental understanding of similarity that the agents will learn; and the second experiment that
evaluates how the trained agents impact the rivalry assessment from the humans.

The Chef’s Hat Card Game [33] introduces a competitive multi-player scenario designed to be
used both in human-human and human-robot interaction (HRI).As a reinforcement learning task,
it provides a controllable action-perception cycle, where each player can only perform a restricted
set of actions. This, in turn, allows each player to behave as organically as possible and allows the
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direct measure transfer from a real-world game into an OpenAI GYM-ready scenario without any
functionality loss.

Chef’s Hat is a 4-player round-based card game, where each person has a restaurant-context role
(Chef, Sous-Chef, Waiter or Dishwasher). This role is updated after each game based on the order
of finishing the previous match. At the beginning of the game, the players are dealt a full hand of
cards (17 cards per player), and taking turns they need to dispose of their cards as quickly as possible.
The cards represent ingredients for pizzas, and each round consists of the players making pizzas
by discarding cards in a certain manner. Wins the match the first player that discards all its cards,
receiving 3 points. The second player receives 2 points, the third receives 1 point and the last player
receives no points. Wins the game the first player to reach 15 points. The details of the pizza-making
rules and the role hierarchy are explained fully in the games’ formal description [33].

Reinforcement Learning Agents. To simulate players in the game, we must train reinforcement
learning agents. Following the original design proposed by the Chef’s Hat authors [24], we will
implement and train two types of agents: one based on Deep Q-Learning (DQL) and another one
based on Proximal Policy Optimization (PPO). We need to implement these agents as their learned
behavior will be our baseline for our final evaluation.

The Chef’s Hat simulation environment defines the state space as an aggregation of the cards on
the board and the current cards in the player’s hand. The action space is composed of 199 allowed
discard actions (which comprise each card and card combinations allowed by the game rules), and
one pass action, totaling 200 actions. Each agent is trained using the same reward: 1 for an action
that leads to a victory, and -0.01 for every other action. Using such ultimate reward guarantees that
the agents will have to explore enough and find their strategies to win the game.

We will train the agents from scratch, first playing against agents that output random movements, and
later on against themselves. As each game is composed of 4 players, we will mix different instances
of each agent in different game sessions. The entire optimization of the agents, including topology
definition, training parameters, and training strategies will be defined using standard optimization
schemes, such as grid-search and TPE. As our goal is to obtain agents that learn how to win the
game, the entire optimization for the first experimental task will be done based on a pure objective
performance: the total number of victories in a set of games.

Data Collection and Experimental Environment. Our experimental environment involves the
agents playing the game against a human opponent. This will be done with a web-based interface
for the Chef’s Hat simulation environment, that will allow a human to play, in real-time, against
three other artificial agents. The web-interface will be bounded to the same rules as the game’s
simulation, to maintain the same evaluation environment. Each human will play a full 15 points
games against three agents, one based on DQL, one based on PPO, and one based on an agent that
chooses random moves. A participant can finish the game by playing a minimum of 5 matches, each
consisting of an average of 30 turns. This totals to at least 150 action/space pairs per person. We
aim to have 60 participants, each playing one full game in both scenarios 1 and 2. This will generate
9000 space/action data points per scenario. For each match, we will collect all the objective and state
information from all players, but most importantly the total game points (points) per match. We will
also collect subjective information from the human players, to understand better their behavior and
help us to formalize rivalry:

• Before the game starts, we will proceed with a simple questionnaire to self-assess the per-
son’s agency (agh), competence (cth), sense of communion (cmh) [34] and competitiveness
(Ch) [35] in a scale between 0 and 5.

• At the end of the game, the human player will assess each agent adversary based on their
agency (aga), competence (coa), and communion (cma) traits.

Proposing Rivalry.To optimally define the impact that each agent has on the players, we will use
the aforementioned formalization of Rivalry [16]. Rivalry can be defined as a subjective social
relationship arising between two actors based on the competitive characteristics of an individual,
as well as the increasing stakes and psychological involvement in the situation. Thus, a proposed
theoretical model of rivalry, illustrated in Figure 2, suggests that antecedents of rivalry are similarity
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factors, competitiveness, and relative performance of the agents [16]. In our scenario, this translates
into:

Sa =
√
(agh −aga)2 +(cth − cta)2 +(cmh − cma)2 (1)

Pa = (pointsh − pointsa)/15 (2)

Ra = (Sa +Ch +Pa)/3 (3)

where the index a defines one of the agents, the index h defines the human ratings, Sa is the similarity
between the player and the agent, assessed by the player themselves; Pa is the relative performance
for each agent, and Ra is the final rivalry rating.

Research in rivalry suggests that individuals tend to evaluate their abilities by comparing their
performance to the persons who have similar characteristics to themselves. The similarity can be
measured in demographics [16], gender [36], personality [16], perceived traits [37] and rank in
competition [17] to assign social or behavioral attributes to the other. For this work, in addition
to the ranking and performance similarity, we included trait similarity as a factor that includes
competence, agency and communion traits as indicators of relevant behavioral attributes. These traits
are frequently used in social stereotypes research (e.g., gender, nationality, age, status) [34], shown to
affect liking [38] and social perception [39] was previously shown to affect competitive behavior [40].
Agency, competence and communion traits were also used in virtual agent research to examine users’
judgements of expected agent behavior [41]. These traits were chosen as representative of traits due
to their simple understanding, which facilitates the own and third-party assessment [42]. Also, due to
its direct mapping between action and perception [43], which makes it ideal for a competitive card
game analysis.

The presence of a rivalry effect affects the motivation of the individual and their performance. Thus,
we expect that rivalry rates will change accordingly to the game development. As the users will
evaluate the entire game behavior of an agent, and the only difference between players is the way
they play the game, the measure of rivalry will reflect directly the user’s perception of the outcome of
the reinforcement learning strategies.

Predicting Rivalry. In our second experiment, each agent will calculate rivalry against the human
player. To that, they follow the same rivalry calculation as humans. To predict similarity, tho, the
agents will use a similarity predictor that will be trained based on the humans´ responses.

The agent-player similarity predictor (pra(h)) will match state+action chosen by humans (h) with the
given competence, agency and communion traits (aga, cta and cma), and it follows the approach used
in virtual agent research [41]. By collecting the data during the first experimental scenarios, we will
form the dataset to train a similarity predictor, used then later in our second experimental scenario.
Our similarity predictor will be built as an MLP that will map an interval of action/spaces with a
set of similarity scores. We posit the 9000 action/space pairs collected in Scenario 1 to be sufficient
to obtain an efficient similarity predictor. The similarity predictor of each agent will infer, during
game-play, the traits of each human the agents play against. Each type of agent, DQL, and PPO will
also have a single set of traits associated, given also by our human analysis of scenario one. Thus the
similarity based on an agent´s (a) perspective (Sh) is given as:

Sh =

(√
(pra(h)− (aga,cta,cma))2

)
(4)

The performance measure of the agents will be given by their own assessment of their actions.
To achieve this, each agent will compute the introspective confidence (ica) [44] of each action,
which focuses on scaling the selected Q-value of an action towards the final goal using a logarithm
transformation which computes the probability of success, in our case, of winning the game. The
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introspective confidence gives us a self-assessment of the agent’s actions, based on its own game
experience. The agent´s perspective is given as:

Ca =
∑ ica(act)

totalActions
(5)

where act, is each of the actions the agent took during the game.

The relative performance (Ph) is calculated similarly to the human´s perspective, but taking the
agent´s perspective into consideration. Thus, the predicted rivalry (Rh) is defined as the mean of
(Sh +Ca +Ph).

To include the predicted rivalry in the reward function will impact on the agent behavior. As the
rivalry prediction is a representation of subjective and objective human metrics,

First Experimental Scenario. Our first experimental scenario involves one human playing the game
against three agents: two pre-trained agents, one using DQL and the other PPO, and an agent that
only does random moves. Our goal with this experiment is to collect the human assessments about
the agents, to provide an appropriate dataset for the rivalry prediction. Also, it will be important
to identify the baseline assessment that each of the trained agents already carries, which will be
completely related to their learning strategy during training.

Second Experimental Scenario. We will repeat the same setup as the first experimental scenario,
except the following: each agent will be updated, during game-play, based on the novel reward
function that includes a rivalry score. The rivalry score will be predicted by each agent in a process
defined above. Each agent will include the rivalry against the human in its reward function, to change
the human perception toward themselves. The agents will be trained once per finished match. For
each agent, we will experiment with three conditions: increase rivalry, decrease rivalry, and maintain
a rivalry.

The fine-tuning of the similarity model, parameter-wise and learning-wise, is part of the experimental
methodology proposed in this experimental scenario. As the agents are already trained to learn how
to play the game, we will investigate a weighted aggregation as a simple but effective manner to
include the rivalry into the existing reward [45]. The precise definition of the reward calculation will
come as a result of the analysis of the outcomes of Scenario 2.

Expected Contribution We believe that integrating the social representations given by our novel
rivalry score will enrich current reinforcement learning strategies. We hope to pave the way to bridge
the gap between pure reinforcement learning optimization and social learning applications.
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