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Abstract

Humans can learn a variety of concepts and skills incrementally over the course of
their lives while exhibiting many desirable properties, such as continual learning
without forgetting, forward transfer of knowledge, and learning a new concept with
few examples. However, most previous approaches to efficient lifelong learning
demonstrate only subsets of these properties, often by different complex mecha-
nisms. In this preregistration submission, we propose to study the effectiveness of
a unified lifelong learning framework designed to achieve many of these properties
through one central mechanism. We describe this consolidation-based approach
and propose experimental protocols to benchmark it on several skills, using grid
searches over hyperparameters to better understand the framework.

1 Introduction

The past decade has seen significant growth in the capabilities of artificial intelligence. Deep learning
in particular has archived great successes in medical image recognition and diagnostics [1, 2], tasks
on natural language processing [3, 4], difficult games [5], and even farming [6]. However, deep
learning models almost always need thousands or millions of training samples to perform well. This
is in a sharp contrast with human learning, which normally learns a new concept with a small number
of samples. Other major weaknesses in current deep learning, when compared to human learning,
include difficulty in leveraging previous learned knowledge to better learn new ones (and vice versa),
learn many tasks sequentially without forgetting previous ones, and so on.

Lifelong learning (LLL) [7, 8], also known as continual [9] or sequential learning [10], is one research
area concerned with flexible and efficient learning and the transfer of skills across long sequences of
tasks. In this work, we consider the LLL setting of task-incremental classification, where batches
of data for new tasks arrive sequentially. That is, a sequence of (T1, D1), (T2, D2), ... are given,
where Di is the labeled training data of task Ti (from the space of tasks T ), and an individual task
consists of a set of classes to be learned. Classification models for (T1, T2, ..., Tk) must be functional
before (Tk+1, Dk+1) arrives. This models the incremental process of human lifelong learning. The
particular set of desirable LLL properties we are concerned with include the following:

• Continual learning and testing: Before starting to learn a new task Tj , a LLL approach
should be able to perform well on all Ti<j . While learning the new task Tj , LLL should
minimize the use data D<j . This is in contrast to standard multi-task (batch) learning,
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where all data of all tasks are used for training at the same time. This continual learning
condition ensures that the model is 1) useful, since each task must be learned to an acceptable
performance level, 2) flexible, in that new tasks can be continually accommodated, and 3)
efficient, in that tasks are learned with high computational and data efficiency. For example,
if T1 requires learning to classify images of “0” vs. not “0” (see Section 3), acceptable
performance on this task should be reached before moving onto T2 of “1” vs. not “1”, which
should also be learned to an acceptable level.

• Non-forgetting: This is the ability to avoid catastrophic forgetting [10], where learning Tj
causes a dramatic loss in performance on Ti<j . Ideally, learning Tj when using only the
data of Tj would not affect Ti<j . For example, learning T2 of “1” vs. not “1” should not
cause performance on the previous task, “0” vs. not “0”, to degrade. Due to the tendency
towards catastrophic forgetting, non-lifelong learning approaches would require retraining
on data for all tasks together to avoid forgetting. This may reduce computational and data
efficiency.

• Forward transfer: This is the ability to learn new tasks, T≥i, easier and better following
earlier learned tasks, T<i, also known as knowledge transfer [11]. Achieving sufficient
forward transfer also enables few-shot learning of later concepts. For example, first learning
to classify “0” vs not “0” should allow the later task of “O” vs. not “O” to be learned faster.

• Non-confusion: Machine learning algorithms often find the minimal set of discriminating
features necessary for classification. Thus, when more tasks emerge for learning in our
LLL setting, earlier learned features may not be sufficient, leading to confusion between
classes. For example, to distinguish between “1” and “0”, the learned model may identify
straight stroke for class “1” and curved stroke for “0”. The same features may then be used
to classify “I” vs “O”. However, if the model is tested on all tasks so far, the model may be
confused between “1” and “I” as well as “0” and “O”.

Most previous approaches can only demonstrate subsets of these human-like properties, often by
different complex mechanisms. For example, existing lifelong learning techniques tend to use one or
more of three types of mechanisms, each of which comes with their own drawbacks and hurdles [12].
These mechanisms are based on replay, regularization, and dynamic architecture respectively. See
Section 2 for reviews and comparisons of these mechanisms.

In this paper, we describe a unified framework with one central mechanism that meshes with additional
mechanisms to seamlessly demonstrate many human-like lifelong learning properties. The central
mechanism, weight regularization, controls the flexibility of network weights to direct the transfer of
skills across tasks as well as prevents the forgetting of skills. It is also intended to support network
expansion in efficiently accommodating new tasks. We primarily consider our framework as applied
to deep neural networks, which have become popular in recent years, and are an attractive type of
machine learning model due to their ability to automatically learn abstract features from data.

The questions to be answered by our empirical analysis as well as our hypotheses are as follows:

1. How well does task-difficulty-based network expansion, as described in Section 3.2, work
to accommodate new tasks? We hypothesize that this type of expansion allows for learning
new tasks to the same accuracy level as less efficient methods.

2. How well does controlling the flexibility of task-specific weights, as described in Section 3.3,
work to reduce forgetting? We hypothesize that forgetting can be almost completely removed
with high enough regularization.

3. How well does task-similarity-based skill transfer, as described in Section 3.4, work for
enabling forward transfer? We hypothesize that this type of skill transfer mechanism will
work better than when no transfer is allowed and when transfer is not controlled at all.

4. How well does pairwise confusion reduction, as described in Section 3.5, reduce confusion?
We hypothesize that this mechanism can reduce confusion by the same amount as comparable
methods while being less resource intensive.
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2 Related Work

The mechanisms used to perform LLL tend to fall into three categories and often only demonstrate
subsets of LLL properties previously discussed. The first mechanism, replay, commonly works by
storing previous task data and training on it alongside new task data [13, 14, 15, 16]. As a result of
its data and computation inefficiency, we consider it not to be a very human-like learning mechanism.

The second mechanism is regularization. This mechanism works by restricting weight changes
(making them less “flexible”) via a loss function so that learning new tasks does not significantly
affect previous task performance [17, 18, 19, 20, 21, 22]. We use this mechanism as the basis for our
unified framework. Compared to previous approaches, we propose to use regularization more flexibly
and strategically. Instead of simply controlling weight flexibility to retain previous task performance,
we leverage it to also encourage forward transfer (Section 3.4).

The third mechanism, dynamic architecture, commonly works by adding new weights for each task
and only allowing those to be tuned [23, 24, 25]. This is often done without requiring previous task
data and stops forgetting while also allowing previous task knowledge to speed up learning of the
new task. While this mechanism is necessary for LLL of an arbitrarily long sequence of tasks (any
fixed-size network will eventually reach maximum capacity), it should be used sparingly to avoid
unnecessary computational costs. In Section 3.2 we describe how a dynamic architecture can be
efficiently used to help achieve multiple LLL properties when combined with our central mechanism.

3 Methodology and Experimental Design

In this section we describe our unified framework. We start by introducing the central mechanism and
in the rest of the section, discuss how to use the central mechanism and combine it with additional
mechanisms to achieve the several desirable LLL properties described in Section 1. For each
mechanism, we also describe the experimental protocol to evaluate it. Shared among the experimental
protocols are the following settings:

Task. We will use the following binary classification task sequence with samples taken from the
balanced EMNIST dataset [26]: T1 = (0 vs. not 0), T2 = (1 vs. not 1),..., T5 = (4 vs. not 4),
T6 = (A vs. not A), T7 = (I vs. not I), T8 = (O vs. not O), T9 = (Z vs. not Z). For tasks 1 to 5,
“not x” means {0, 1, 2, 3, 4} \ x. For tasks 6 to 9, “not x” means {A, I,O, Z} \ x. This task sequence
is a minimal case allowing for proof-of-concept experiments where we can be sure that there is a)
clear room for forward transfer (e.g. from “0” to “O” or “1” to “I”) and b) clear cases of confusion
(e.g. between “0” and “O”). In a more complex task sequence it would be harder to verify whether
the proposed mechanisms work as intended. For each character, we will use 50 training samples.
Additionally, all results will be averaged across 20 random seeds.

Architecture and training. We will use a network architecture with two hidden layers of with ReLU
activation. The width of the layers for the first task is Nmax. The Adam optimizer [27] will be used,
with the default hyperparameters provided by Keras [28]. We will use a a batch size of 64 and training
for 5 epochs for each task.

3.1 A Central Consolidation Mechanism

We propose a LLL framework which situates a consolidation policy as the central mechanism. The
consolidation policy works through a high-dimensional dynamic hyperparameter, bbb, which separately
controls the flexibility of all network weights. Each network weight thus has its own consolidation
value specifying how easy (or hard) it is to modify the weight. Depending on the specific bbb-setting
policy used during training, we hypothesize that several desirable learning properties can be achieved.
While the network weights are learned via back-propagation, bbb is set by a consolidation policy.

The consolidation mechanism ultimately works through dynamically modifying the loss function. If
each network weight, θi, is associated with a consolidation value of bbbi ≥ 0, the loss for the new task
by itself, Lt, is combined with weight consolidation as follows:

L(θ) = Lt(θ) +
∑
i

bbbi(θ
t
i − θ

target
i )2 (1)
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Here, θtargeti is the target value for a weight to be changed to. This can be either its value before
training of the new task, or zero, in the case where we explicitly want to prevent certain weights
from being used. θti is the weight value being updated during training on task t. This loss has the
following behaviour: a large bbbi causes changing θi away from θtargeti to be strongly penalized during
training. When bbbi is arbitrarily large, we refer to these weights as “frozen”, and simply fix them
during training. In contrast, bbbi = 0 indicates that the weight is free to change, i.e. it is “unfrozen”.

As elaborated in the rest of this section, we distinguish between three types of weights, which have a
consolidation values and initialization methods corresponding to each. High-level details of these
weight groups are in Figure 1. There are group B weights (blue), which are intended to be free to
tune. There are group R weights (red), which contain previous task knowledge. Finally, there are
group G weights (green), which can facilitate the transfer of knowledge between tasks.

3.2 Continual Learning of Classification Tasks

In LLL and human learning, we desire to learn new tasks after learning previous tasks. In real brains,
this is supported by continually growing new neurons and connections between them [29, 30]. Our
framework similarly considers learning new tasks with the strategic use of network expansion.

To accommodate a new task, Tj , we propose to extend the width each layer of the neural network by
Nj , an amount proportional to the estimated difficulty of the task.

To computeNj , we first compute the maximum similarity to previous tasks. To compute the similarity
between two tasks, sim(Ti, Tj), we feed positive samples of the new task, Tj , into the network, and
average the probabilities output by model for Ti. When the similarity between Tj and any previous
task is high (i.e. the new samples are similar to those of a previous task), proportionally fewer nodes
are added. That is, Nj = Nmax (1−maxi=1,...j−1 sim(Ti, Tj)). In the extreme case where a new
task is identical (or very similar) to a previous one, no new nodes (aside from the output) may need to
be added.

When extending each layer of the network, the new column of nodes is connected as shown in
Figure 1 (b) and (c). These group B weights are randomly initialized and have bbb values of Bbbb = 0, so
that they are free to tune. As outlined in the pseudo-code in Algorithm 1, after extending the network
and performing steps corresponding to components of our proposed framework to be discussed next,
training can be performed using only samples of the new task.

Train task 1 
(1 vs. not 1)

Train task 3
(I vs. not I)

Train task 2
(2 vs. not 2)

Reduce confusion 
between 1 and I

2 and 1 are 
dissimilar, so 
transfer is 
prevented by 
disabling grey 
weights

Since 1 and I are 
similar, weights 
are copied at 
initialization from 
x to y

x

y

(a) (b) (c) (d)

weight 
group b initialization

R Rb = inf -
G Gb = 0 Ginit= based on R
B Bb = 0 Binit = +/- 0

grey inf 0

train data T1 only
loss T1 only

train data T2 only
loss T2 only

train data T3 only
loss T3 only

train data T1+T3
loss combine T1, T3

Figure 1: An example of applying the several mechanisms of our LLL framework. In step (a), task 1
is being trained. All weight here are in group B (randomly initialized and free to tune). In step (b)
task 2 is being learned without forgetting task 1. Group R (red) weights can be frozen to prevent
forgetting of T1. Since 2 is dissimilar from 1, transfer can be prevented by disabling the transfer
weights (grey). In (c), task I is learned while adding fewer nodes due to similarity with task 1. High
dissimilarity from task 2 means that the corresponding forward transfer links are disabled. In (d),
confusion is being reduced when 1 and I are confused, with additional nodes added when necessary.
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Algorithm 1: Combining Framework Skills
// Given that tasks T1, ..., Tk−1 have been learned

1 Extend width of network proportional to task difficulty as described in Section 3.2
2 Set consolidation values for non-forgetting of previous tasks as described in Section 3.3 // see

group R weights in Figure 1
3 Initialize weights from earlier units to newly recruited units as described in Section 3.4 // see

group G weights in Figure 1
4 Train the new task Tk to minimize Eq. 1 // only on the data of new task Tk
5 Perform confusion reduction as described in Section 3.5

Experimental design. We need to demonstrate that tasks are learned to the same competency as
though they were trained with a larger number of nodes added. The evaluation metric consists of
computing the AUC for each task, and averaging across tasks after all tasks have been learned. We
will try a range of values for Nmax : {0, 10, 50, 100}. Baselines consist of adding the following
constant widths: {0, 10, 50, 100}. For these tasks, we will use Rbbb = inf (i.e. frozen) and disable
the forward transfer mechanism (introduced in Section 3.4) so that all transfer links are initialized to
non-zero values, but no weight-copying is done. In addition to task performance, we will also report
the model size, as a fraction of the model size when the same Nmax value with constant expansion
is used. We expect that the performance will be roughly the same for both dynamic expansion and
constant expansion for a given maximum expansion amount.

3.3 Non-Forgetting

Maintaining performance on previous tasks while learning new ones is the primary difficulty of LLL.
In our framework, we can design consolidation policies to ensure that this is achieved while the new
task is learned with the data for the new task only.

An intuitive way to prevent forgetting is by using a larger bbb value for weights which most influence
the loss of a trained model [17]. To ensure non-forgetting during new-task training, we thus propose
to set Rbbb such that the previous-task weights are frozen/near-frozen.

Experimental design. We need to demonstrate that the learned AUC (the AUC on a task when it
is first learned) is close to the retained AUC (the AUC after all tasks have been learned). We can
subtract the average learned task AUC from the average retained task AUC. Larger negative values
indicate greater forgetting. This experiment will be run with a fixed width extension value of 50. We
will try the following range of Rbbb: {0, 1, 10, 100, 1000, inf}. We will also leave the forward transfer
mechanism disabled. We expect the larger consolidation values to provide better non-forgetting in
comparison to the baseline value of 0 when no consolidation is applied.

3.4 Forward Transfer

While non-forgetting ensures task performance is maintained over time, previous tasks do not “help”
learning new tasks, a concept prominent in multi-task and transfer learning [11, 31], and appears in
LLL as “forward transfer”.

We propose to achieve positive forward transfer with our framework by controlling the transfer of
skills between tasks. This skill transfer is mediated by the dashed links in Figure 1. When these
weights are “disabled” (initialized to 0 and frozen – see grey links in Figure 1(b), (c)), the past task
is unable to influence the new task. When they are “enabled” (unfrozen and initialized to non-zero
values – see group G weights in Figure 1), features learned by past tasks can be quickly reused
when learning a new task. When a task might lead to negative transfer for the new task, the transfer
weights would be disabled, and when positive forward transfer is expected, they are enabled. Group
G weights have a consolidation of Gbbb = 0, allowing them to be freely tuned.

In an attempt to more directly leverage previous knowledge, we identify the most similar task to
the new one, and copy the output layer weights from that task to the new task weights, as shown in
Figure 1(c). All other G weights are randomly initialized. We use a simple technique to decide when
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to allow transfer: if the similarity, sim(Ti, Tj) (discussed in Section 3.2) is above a certain threshold,
α ∈ [0, 1], then enable the transfer links and copy the similar-task weights, otherwise disable them.

This idea of selectively sharing knowledge between tasks is conceptually shared by GO-MTL [32],
which learns in a non-continual fashion. GO-MTL computes task similarity by first learning a
separate model for each task and then looking at the similarity between learned weights. A sparse
matrix representing transferability of knowledge between tasks is computed. A LLL approach by
[33] selectively transfers skills from “canonical tasks” to a new task. The amount of transfer is based
on the likelihood that new task samples would be generated by a generative network learned by each
canonical task.

Experimental design. We need to demonstrate that tasks are learned to a greater competency with
the selective forward transfer mechanism enabled than without. We can thus subtract the learned
AUC when the mechanism is disabled (all transfer weights randomly initialized) from the learned
AUC when it is enabled. Larger positive values indicating greater forward transfer. The experiment
will use Rbbb = inf , fixed width expansion, and a grid search over Nmax = {0, 10, 50, 100} and
α = {0, 0.25, 0.5, 0.75, 1.0}. We expect that the forward transfer mechanism will have a greater
contribution when Nmax is smaller (with larger networks, the effect of forward transfer is likely
smaller) and when α = 0.5 (this is a guess at the threshold below which negative transfer would
occur).

3.5 Non-Confusion

When a new task such as “O vs not O” is similar to a previous one, “0 vs. not 0”, we leverage this
fact to learn the new task faster, as described in the previous subsection. However, since both tasks
are learned without observing samples of the other, confusion may occur when we present an O or 0
to the model.

We propose to resolve such confusion in a pairwise manner, as step 5 in Algorithm 1. This process
uses stored prior task samples (Mem each) to compute entries of the confusion matrix corresponding
to confusion with the new task, Tj . Whenever confusion occurs between Ti and Tj at a rate greater
than some threshold, γ ∈ [0, 1], we can simultaneously fine-tune the last-layer weights of Ti and Tj
on samples of the confused tasks. This is done by adding a temporary softmax output and minimizing
the categorical cross-entropy loss when classifying positive samples of both classes. When this
is insufficient to reduce confusion to below γ, we can expand the model by a constant amount,
Nconfused, with type B weights and repeat. This step is reflected in Figure 1(d).

Experimental setup. We can determine effectiveness by observing the confusion, as measured by
the average task recall error when the task ID is not provided. When this value is larger, it indicates
greater confusion. This experiment will be run with the following fixed values: Nmax = 100,
Rbbb = inf , α = 0.5, and Mem = 20. We will run a grid search over γ = {0.1, 0.2, 0.3}, and
Nconfused = {0, 10, 50}. For baselines, we can consider when no confusion reduction is performed
(γ = 1) and when no expansion for confusion is performed (Nconfused = 0). We expect that smaller
values for γ will reduce confusion, especially with larger values of Nconfused.
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