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Abstract

A reasonable assumption in recommender systems is that the rows (users) and
columns (items) of the rating matrix can be split into groups (communities) with
the following property: each entry of the matrix is the sum of components corres-
ponding to community behavior and a purely low-rank component corresponding
to individual behavior. We propose to investigate (1) whether such a structure is
present in real-world datasets, (2) whether the knowledge of the existence of such
structure alone can improve performance, without explicit information about the
community memberships. To these ends, we formulate a joint optimization prob-
lem over all (completed matrix, set of communities) pairs based on a nuclear-norm
regularizer which jointly encourages both low-rank solutions and the recovery
of relevant communities. Since our optimization problem is non-convex and of
combinatorial complexity, we propose a heuristic algorithm to solve it. Our al-
gorithm alternatingly refines the user and item communities through a clustering
step jointly supervised by nuclear-norm regularization. The algorithm is guaranteed
to converge. We propose some synthetic data experiments to confirm or disprove
our hypothesis and evaluate the efficacy of our method at recovering the relevant
communities.

1 Introduction

In recommender systems (RSs) we aim to recommend items (e.g. movies, products, books) to users.
Oftentimes information about users (resp. items) is available in the form of categorical attributes
(commonly referred to as communities) such as gender, nationality, or occupation (resp. genres,
brands, or authors) [1, 2, 3, 4]. Such information is frequently used, for instance, to improve RSs’
performance in terms of accuracy enhancement [4], interpretability [5, 6], and scalability [7].

However, user and item communities are often not explicitly available. A typical solution to this
problem is to apply a clustering method on other forms of (non-categorical) side information. For
instance, users are often clusterized considering user-user interactions [8, 9, 10, 11, 12]. Another
research direction is concerned with providing partitions of the users and items into clusters based
on a rating matrix alone. A simple solution is to apply a clustering method to the user and/or item
profiles obtained as a natural byproduct of the rating prediction process of most collaborative filtering
models [13, 14, 15]. However, such methods are ad hoc post-processing steps and do not exploit the
cluster structure in the predictions themselves.

Previous attempts at detecting user and item clusters based purely on a low-rank partially observed
matrix assume noisily observed pure community behaviour [9, 8]. On the other hand, our hypothesis
is that community behaviour and continuous low-rank structure can coexist in the same matrix. To
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confirm or disprove this hypothesis, we aim to perform community discovery and low-rank matrix
completion jointly, by constructing a model which efficiently exploits the "discreteness prior" on the
existence of underlying user and item communities which play a role in the generation of the ratings.

We assume the rows (users) and columns (items) of the matrix can be split into groups (communities)
with the property that each entry of the matrix is a sum of components corresponding to community
behaviour and a purely low-rank component corresponding to individual behaviour. Such a decompos-
ition was first introduced in [6], where an algorithm is provided to perform matrix completion based
on this assumption, assuming complete knowledge of the communities of users and items. In contrast,
we formulate an optimization problem over all (completed matrix, set of communities) pairs based
on a nuclear-norm regularizer which jointly encourages both low-rank solutions and the recovery
of ’relevant’ communities. Since our optimization problem is non-convex and of combinatorial
complexity, we propose a heuristic algorithm to solve it.

Our experiments will address the following questions:

• Is it conceivable for the prior knowledge of the existence of communities, as opposed to a
more general low-rank prior, to improve the performance of matrix completion, without any
explicit knowledge of the community membership function? Specifically, on synthetic data,
how does our method perform in comparison with baselines that can be found in literature?

• Do real datasets (e.g. MovieLens) exhibit a non-trivial combination of discrete (community)
behaviour and continuous (generic low-rank) behaviour?

• In real RSs datasets, are the groups recovered by our methods meaningful and interpretable?

The presence of the predicted behaviour can be confirmed or disproved by evaluating whether
our methods (which model both phenomena) outperform baselines which do not allow for such
phenomena. Categorical information is easier to interpret than generic low-rank features: it can be
compared with known groups (e.g. genres), or more finely investigated (one can, e.g., search for
common plot themes). If confirmed, our hypothesis could shed light on the underlying phenomena
driving recommender systems predictions, greatly improving explainability.

2 Methodology and experimental design

Notation: Let R ∈ Rm×n be a partially observed matrix. We denote by Ω ⊂ {1, 2, . . . ,m} ×
{1, 2, . . . , n} the set of observed entries and RΩ the matrix of observed entries with zeros imputed in
the missing entries. For all i ≤ m (resp. j ≤ n), write f(i) (resp. g(j)) for the community to which i
(resp. j) belongs. Denote by d1 (resp. d2) the number of user (resp. item) communities. Thus, f (resp.
g) are functions from {1, 2, . . . ,m} (resp. {1, 2, . . . , n}) to {1.2. . . . , d1} (resp. {1.2. . . . , d2}). By
abuse of notation, we will identify each element of u (resp. v) in {1.2. . . . , d1} (resp. {1.2. . . . , d2})
with the community f−1(u) ⊂ {1, 2, . . . ,m} (resp. g−1(v) ⊂ {1, 2, . . . , n}) it represents.

Optimization problem: We propose the following optimization problem:

min
f,g

min
C,M,U,Z

L with L =
∑

(i,j)∈Ω

|Cf(i),g(j) +Mi,g(j) + Uf(i),j + Zi,j −Ri,j |2

+ λC‖C‖∗ + λMU [‖M‖∗ + ‖U‖∗] + λZ‖Z‖∗, (1)

subject to ∑
i∈f−1(u)

Mi,v = 0 ∀u ≤ d1, v ≤ d2,
∑

j∈g−1(v)

Uu,j = 0 ∀u ≤ d1, v ≤ d2,

∑
i∈f−1(u)

Zi,j = 0 ∀j ≤ n, and
∑

j∈g−1(v)

Zi,j = 0 ∀i ≤ m. (2)

Here, λC , λMU and λZ are regularization parameters. The conditions (2) imply that the matrix Z
is free of any community-wide behaviour component for either users and items, and the matrices
M ∈ Rm×d2 and U ∈ Rd1×n are free of any community-wide behaviour components for the users
and items respectively.
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Note that the optimization is over not only the matrices C,M,U and Z, but also over the choice
of communities f, g. In the case where the community side information is fixed in advance, an
equivalent problem has been formulated in [6], where an iterative imputation algorithm is proposed
together with a proof of convergence.

Algorithm: Since (1) involves optimization over a combinatorial number of possible functions f, g
we propose a heuristic algorithm to reach a solution. Like (1), our algorithm takes as input the
partially observed matrix R and the hyperparameters d1, d2 and Λ = {λZ , λC , λMU}. Our strategy,
further represented in Algorithm 1, is as follows.

First, we solve the optimization problem (1) for f = g = null (which is equivalent to d1 = d2 = 0).
Secondly, we cluster both the rows and the columns of the recovered matrix, with the numbers of
clusters set to d1 and d2, yielding the partitions f0 and g0 respectively. Our next aim is now to
iteratively refine the partitions f and g. To this end, we solve problem (1) with f = f0, g = g0

fixed, obtaining the matrices R̂0 = {C0,M0, U0, Z0}, and consider, for each set of non-negative
parameters θ = (θ1, θ2, θ3, θ4) in some predetermined set Θ, the following cluster profile:

Sθ = θ1C̃0 + θ2M̃0 + θ3Ũ0 + θ4Z0, (3)

where C̃, M̃ and Ũ are m × n matrices such that C̃i,j = Cf(i),g(j)∀i ≤ m, j ≤ n, M̃i,j =

Mi,g(j)∀i ≤ m, j ≤ n, and Ũi,j = Uf(i),j∀i ≤ m, j ≤ n1. For each θ ∈ Θ we now obtain partitions
fθ (resp. gθ) of the users (resp. items) by clustering the rows (resp. columns) of Sθ. Next we
solve (1) fixing f = fθ, g = gθ, obtaining the matrices R̂θ = {Cθ,Mθ, Uθ, Zθ} and calculate
`θ = L(RΩ, R̂θ,Λ, fθ, gθ). Finally, we compute the minimum `θmin

of `θ over all values of θ and
retain the partitions fθmin , gθmin and the associated matrices R̂θmin = {Cθmin ,Mθmin , Uθmin , Zθmin}.
Next we can feed this data to the next iteration of the algorithm: we use R̂θmin

to build the matrices
Sθs again and continue the process until convergence.

Regarding the choice of the searched set Θ, since we use the k-means algorithm as the clustering
procedure we can restrict ourselves to θs such that θ1 + θ2 + θ3 + θ4 = 1, and for computational
reasons, we set Θ to be the intersection of that set with a given discrete grid. Note that the value
θ = (1, 0, 0, 0) ∈ Θ will always return the same clustering and the same loss as the previous iteration.
Thus, the loss is guaranteed to decrease monotonically at each iteration and the algorithm converges.

Remark 1: The motivation for using k-means as the background clustering procedure is that it can be
interpreted as a well-principled approximation to the optimization of the loss L over the user (item)
cluster assignments: assume for simplicity that there are no clusters over items so that the matrix is
only composed of the terms C and Z, with ΛC = 0. For any clustering assignment over the users,
the rows of the matrix Z are the distances to the cluster centers. Minimizing the nuclear norm of Z
over the choice of assignments is very difficult due to the implicit (cross-cluster) low-rank condition.
However, if we instead consider the Frobenius norm (at small cost to the intuition), the solution is
given exactly by k-means.

Remark 2: The intuition behind the introduction of the heuristic search parameter θ and the construc-
tion (3) of Sθ is as follows. If λZ and λMU are both very large2, and the item partition g is correct, it
is clearly best to cluster the rows of M̃ + C̃. Indeed, the items only exhibit community behaviour in
those components. On the other hand, if the ground truth contains a large Ũ component (i.e. if there
is significant interaction between user communities and specific items), or if the current item partition
g is significantly wrong, then the component Z + Ũ will be more relevant to the clustering problem.
We further split all components so we can look for solutions across a spectrum of confidence in the
current partition (a very large θ4 will reset the optimization procedure to a distant solution, whilst a
large θ1 will keep the current solution unchanged). Thus our algorithm includes a mix of incremental
steps and explorative search.

Synthetic data generation: To examine our proposed method in different regimes we aim to generate
square matrices in Rm×m where the users and items are naturally divided into k clusters of size m/k.

1Note that since the matrices C̃, M̃ , Ũ and Z live in mutually orthogonal subspaces with respect to the
Frobenius inner product, the matrices C,M,U, Z (and in particular the loss L) are well-defined for any full
matrix R = C̃ + M̃ + Ũ + Z for any given set of hyperparameters and partitions f, g.

2This implies, assuming suitably cross-validated parameters, that the Z,M,U components of the ground
truth matrix are very small.
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Algorithm 1 Collaborative Clustering
INPUT: Partially observed matrix RΩ and hyperparameters d1,d2, Λ = {λZ , λC , λMU}

1: f = null, g = null
2: Z = arg minZ L(RΩ,Λ, f, g)
3: f0 = clusterRows(Z, d1), g0 = clusterColumns(Z, d2)
4: R̂0 = {C0,M0, U0, Z0} = arg minC,M,U,Z L(RΩ,Λ, f0, g0)
5: repeat
6: MAKE C̃0, M̃0, Ũ0 FROM R̂0, f0, g0

7: f = f0, g = g0, `0 = L(RΩ, R̂0,Λ, f0, g0)
8: for θ ∈ Θ do
9: Sθ = θ1C̃ + θ2M̃ + θ3Ũ + θ4Z

10: fθ = clusterRows(Sθ, d1), gθ = clusterColumns(Sθ, d2)
11: R̂θ = {Cθ,Mθ, Uθ, Zθ} = arg minC,M,U,Z L(RΩ,Λ, fθ, gθ)

12: `θ = L(RΩ, R̂θ,Λ, fθ, gθ)
13: end for
14: θmin = arg minθ(`θ)

15: R̂0 = R̂θmin
, f0 = fθmin

, g0 = gθmin

16: until f0 == f and g0 == g
17: return f ,g

Without loss of generality, the first cluster consists of the first m/k entries, etc. and we assume f, g
are defined according to this clustering arrangement. In our first strand of experiments, a wide range
of ground truth matrices Rm×m will be built from the following three basis matrices:

• [Pure community component] (A): First construct a random orthogonal k × k matrix Ā
to represent the cross-community affinities, then set Ui,j = Āf(i),g(j) and set A to be a
normalized version of U of Frobenius norm m.

• [User× (Item community) and vice versa] (B): Construct two matrices B̃1 ∈ Rm×k (and
B̃2 ∈ Rk×m) whose columns (resp. rows) are k random orthonormal vectors in {x ∈ Rm :∑
i∈f−1(c) xi = 0∀c ∈ {1, 2, . . . , k}} such that for each c ∈ {1, 2, . . . , k}, the columns

vectors B̃1
f−1(c),j for j ≤ k are orthonormal (similarly for B̃2). Set Ui,j = B̄1

i,g(j) + B̄2
f(i),j

and let B be a normalised version of U with Frobenius norm m.
• [Community-free behaviour] (C): For each c1, c2 ∈ {1, 2, . . . , k}, (independently) gener-

ate a random matrix U c1,c2 ∈ Rm/k×(m/k−1) whose columns form an orthonormal basis
of the space {x ∈ Rm/k :

∑
i xi = 1}. Then construct the matrix Rm/k×m/k 3 Cc1,c2 =

U c1,c2(U c1,c2)> (for each c1, c2). Define C̄ ∈ Rm×m as a block k×k matrix whose blocks
are the matrices Cc1,c2 . Finally, C is a normalized version of C̄ with Froebenius norm m.

Note that for a given f, g, the matrices A,B,C belong to the (independent) subspaces corresponding
to C̃, (M̃ + Ũ ) and Z respectively. Using these basis matrices, we can construct matrices of the form:

R(α, β) := A+ αB + βC, (4)

where the parameters α and β regulate the importance of ground truth behaviours associated to
A,B and C. We plan to run experiments varying α and β as well as the proportion of observed
entries of R(α, β) and observe how our method performs in different difficulty regimes. Note that the
orthogonality conditions we imposed in the specific construction above make the problem especially
well-behaved: in the ground truth solution, all clusters of both users and items have equidistant
centers, and all of the vectors in any given cluster are equidistant to each other and each is at the same
distance from the center. This means no cluster is easier to detect than any other.

In our second strand of synthetic experiments, we will verify that the proposed method performs well
in a slightly less contrived setting without the orthogonality constraints presented above. Specifically:

• The pure community component Ã will be constructed as a k × k matrix with i.i.d. N(0, 1)

entries. The (normalised) matrix A will be constructed from Ã as before.
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• The columns of the user × community raw matrix B̃1 ∈ Rm×k are projections of independ-
ent isotropic Gaussian vectors in Rm onto the space {x ∈ Rm :

∑
i∈f−1(c) xi = 0∀c ∈

{1, 2, . . . , k}}. B2 is constructed similarly. Further normalisation steps are unchanged.
• The matrix C corresponding to pure low-rank effects, is simply constructed with i.i.d.
N(0, 1) entries, then projected to the space {X ∈ Rm×m :

∑
i∈f−1(c) xi,j = 0∀c ∈

{1, 2, . . . , k}, j ≤ m ∧
∑
j∈g−1(c) xi,j = 0∀c ∈ {1, 2, . . . , k}, i ≤ m} and normalised to

have unit Frobenius norm.

In the above situation, it is no longer true that each cluster is equally hard to detect.

Baselines: In the scenario where no explicit side information is provided for users or items, two
branches of clustering frameworks are widely used in collaborative filtering-based recommendation
systems: (1) matrix factorization (MF) methods and (2) nearest neighbor (NN) methods. We select as
baselines a state-of-the-art representative example of each branch as follows:

• [MF]: Apply standard nuclear-norm matrix factorization [16] and then cluster the rows
(resp. columns) of the recovered matrix to detect communities of users (resp. items).
• [NN]: Nearest neighbor methods typically calculate a statistical distance between users (resp.

items) using only the known entries, and then group the users (resp. items) hierarchically.
As a representative example, we propose to use the Pearson correlation.

Hyperparameter selection and scalability: The relevant hyperparameters in our model are
d1, d2, λZ , λC , λMU . In practice, they can later be determined through cross validation. Note
that the CV procedure can be executed in parallel: different sets of (Λ, d1, d2) can be fitted separately.
In the case of d1 and d2, it is not necessary to run the full algorithm for each combination. Indeed,
note that the choice of d1 and d2 is likely to have a large effect on the optimal loss for typical values
of Λ. Thus, a promising strategy is to run a rudimentary version of our algorithm (e.g. with a single
clustering step) for several d1’s and d2’s, and select the best performing values.

Regarding the for loop in Algorithm 1 (lines 8-13) observe that the iteration i+ 1 does not depend
on iteration i. In this case, small adjustments also allow these steps to be executed in parallel,
significantly reducing the computing burden of the search for the parameters Θ.

Note that line 11, which requires performing an iterative imputation procedure to solve the version of
problem (1) for known f, g, can be greatly accelerated with warm starts: the full recovered matrix
from the previous iteration (of the repeat loop) is used as a warm start for each value of Θ, so that
only a small number of imputations is required. Similarly to other involved optimization algorithms3,
further improvements can be performed if necessary: for instance, one could initially select the
optimal value of Θ based on an even smaller number of imputations, and perform a more thorough
imputation procedure on the chosen Θ before moving to the next iteration of the repeat loop.

Evalutation procedure: In the synthetic data, we propose to assess the agreement of our clustering
method with the ground truth using the Rand Index. Let f1, f2 be two partitions of a set {1, 2, . . . ,m},
the Random index Rand(f1, f2) between f1 and f2 is defined as the proportion of pairs of elements
in {1, 2, . . . ,m} which are either placed in the same cluster in both partitions f1, f2 or placed in a
different cluster in both partitions f1, f2:

Rand(f1, f2) = #(Sf1,f2)/

(
n
2

)
, where

Sf1,f2 = ({i1, i2} : [f1(i1) = f1(i2) ∧ f2(i1) = f2(i2)] ∨ [f1(i1) 6= f1(i2) ∧ f2(i1) 6= f2(i2)]) .

Note that the random index is well defined even if f1 and f2 return a different number of clusters.

Real data experiments: We intend to evaluate the behaviour and performance of our methods on
broadly used and stable benchmark datasets such as MovieLens, Douban and LastFM. In the real data
experiments, since we do not have access to the "correct" clusters, we can only rely on the following
two ad hoc solutions:

• comparing the accuracy (for instance the RMSE) of our method with that of other methods
such as a single optimization of Problem (1) with f = g = null; and

3such as architecture search for neural networks
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• manually observing correlations between our recovered clusters and explicitly or implicitly
available categorical side information (such as movie genres or common plot themes).

3 Related work

Community discovery is a widely researched task in recommender systems. In [8], the authors
propose a probabilistic model to solve binary matrix completion with graph side information based
on the assumption that the users form communities. The clusters are recovered from the graph
information via the stochastic block model (SBM), and the cluster preferences are then recovered
from the observed data. Similar approaches can be observed in [10, 11, 17, 18, 9]. The main
difference between these works and ours is that they do not allow for non-random user-specific
behaviour within each cluster (except [9]), that is, there is no difference between predicting the
matrix and predicting the clusters. In that respect, our setting is more similar to the regularization
based techniques [19, 20, 21], but our method is different. The paper [9] is to our knowledge the
only work that incorporates item-specific behaviour in a community detection context. They do
so in a discrete fashion with the concept of "atypical" movies and users, whilst our approach is a
continuous one, which includes the possibility of representing any matrix (at a regularization cost). A
deep learning approach to extracting community information from graphs is offered by graph neural
networks [22, 23, 24].

Another systematic work which studies collaborative clustering is [25], which provides a deep
theoretical analysis of a model where items must be clusterized based on discrete ratings given by
users, themselves belonging to certain communities (here the ratings are iid for any fixed pair of
communities and no specific algorithm is presented). In [13, 14], the authors detect user groups
applying k-means on the user-latent factor matrix (imputing the unknown entries via collaborative
filtering). Nearest neighbor techniques are also employed in aggregation methods: in [26], the authors
use the Pearson correlation to define the similarity among the users while in [27], the cosine similarity
is applied. One distinguishing characteristic of our model is that it is able to learn both ratings and
communities jointly. It is important to point out some authors explore orthogonality and factorization
to implement clustering in matrices [28, 29, 30]. However, these works differ from ours since they
start from a fully-known matrix, and use different methods. The most related work to ours is [6],
which studied the case where there the community memberships are known. In contrast to this work,
here we study how to recover both communities and the matrix starting only from the incompletely
observed matrix.
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