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Abstract

Recent work has shown promising results using Hebbian meta-learning to solve
hard reinforcement learning problems and adapt—to a limited degree—to changes
in the environment [Najarro and Risi, 2020]. In the original formulation of Najarro
and Risi [2020] each synapse has its own learning rule. This allows each synapse
to learn very specific learning rules and we hypothesize this limits the ability to
discover generally useful Hebbian learning rules. We hypothesize that limiting
the number of Hebbian learning rules through a "genomic bottleneck" can act as a
regularizer leading to better generalization across changes to the environment. We
test this hypothesis by decoupling the number of Hebbian learning rules from the
number of synapses and systematically varying the number of Hebbian learning
rules. We thoroughly explore how well these Hebbian meta-learning networks
adapt to changes in their environment.

1 Introduction

Deep reinforcement learning has made great progress recently on very hard problems like Go,
Starcraft and Dota using deep neural networks [Silver et al., 2016, Vinyals et al., 2019, Berner et al.,
2019]. However, once learned, the networks are static and highly specific. As such there is very little
capacity to adapt to changes in the environment or to generalize across environments [Justesen et al.,
2018]. For instance, the state of the art AlphaStar agent trained to play one race in Starcraft cannot
play another, even though it is a very similar task, and much less play Go or load a dishwasher. In
contrast animals and humans show remarkable flexibility in their ability to generalize across tasks
and adapt to changes.

Meta-learning proposes to overcome these limitations by learning-to-learn. That is to learn general
learning rules that are broadly applicable and enable an agent to quickly adapt to changes in the
environment or to new tasks [Finn et al., 2017, Wang et al., 2016, Weng, 2018].

One particularly interesting approach to meta-learning is Hebbian meta-learning. The goal in Hebbian
meta-learning is to learn Hebbian learning rules that enable an agent to quickly learn to perform
well in its environment and adapt to changes. Hebbian learning is a learning paradigm in which the
synaptic strength between neurons is determined by the correlation of their activity [Hebb, 2005];
informally, "neurons that fire together, wire together". The Hebbian learning paradigm is promising
since it proposes a simple and general learning paradigm supported by extensive empirical evidence
in biological brains [Prezioso et al., 2018, Caporale and Dan, 2008].

Najarro and Risi [2020] showed promising results using Hebbian meta-learning to solve a difficult
car racing reinforcement problem and quadruped locomotion. Impressively the agents policy network
was initialized randomly each episode, so it had to learn the task during its lifetime using only the
meta-learned Hebbian learning rules. Further, the learned Hebbian learning rules generalized to an
unseen quadruped leg damage scenario, which baseline non-plastic feedforward neural networks
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could not. However, each synapse had its own learning rule, which allowed the network to learn very
specific learning rules for each neuron. This raises the question to which degree the network learned
to learn, or whether each learning rule rather encoded very specific dynamics for each synapse.

We hypothesize that the architecture in Najarro and Risi [2020] is limited in its ability to discover
general learning rules, but rather encodes very specific dynamics for each synapse. We further
hypothesize that in order to learn generally useful learning rules the network must be limited to how
many learning rules it can learn. This is inspired by the genomic bottleneck observed in humans
and complex animals, where the information that can be stored in the genome is several orders of
magnitude smaller than what is needed to determine the final wiring of the brain [Zador, 2019].
We hypothesize that limiting the number of learning rules acts as a regularizer, which improves
generalization and adaptability.

2 Related Work

Meta-Learning. In meta-learning the goal is to learn to quickly adapt to a target task given a set
of training tasks [Weng, 2018]. Common approaches can loosely be categorized into black-box,
optimization and metric-based. Black box methods learn a function that, conditioned on samples
from a new task, outputs a function to solve the new task. For instance by jointly learning a network
that can produce a latent summary of a new task and a network that can solve the task given the latent
summary [Santoro et al., 2016, Mishra et al., 2017]. Optimization-based attempts to learn to quickly
optimize on a new task, e.g. by finding an initialization from which optimization on new tasks is fast
[Finn et al., 2017, Nichol et al., 2018] or by learning the optimization algorithm [Andrychowicz et al.,
2016, Li et al., 2017]. Metric based approaches learns an embedding space that facilitates effective
distance based classification, e.g. Siamese networks [Koch et al., 2015] or prototypical networks
[Snell et al., 2017]. Meta Reinforcement Learning (RL) extends the meta-learning idea to the
reinforcement learning setting. Formally the goal is to quickly learn to perform well in a new Markov
Decision Process (MDP) given a set of training MDPs. A common approach is to learn a recurrent
neural network policy where the hidden activations are not reset between episodes [Wang et al., 2016,
Duan et al., 2016]. This allows the policy network to discover how the environment behaves across
episodes and adapt its policy. Another common approach is meta-learning an initialization of a policy
network from which policy gradient descent can quickly adapt to the new MDP [Finn et al., 2017,
Song et al., 2019].

Plastic Artificial Neural Networks A less explored meta-learning approach is based on plastic
neural networks that are optimized to have both innate properties and the ability to learn during their
lifetime. For example, such networks can learn by changing the connectivity among neurons through
local learning rules like Hebbian plasticity [Soltoggio et al., 2018, 2007]. Often these networks are
optimized through evolutionary algorithms [Soltoggio et al., 2018, Najarro and Risi, 2020] but more
recently optimizing the plasticity of connections in a network through gradient descent has also been
shown possible [Miconi et al., 2018]. However, in contrast to the evolving Hebbian learning rules
approach in Najarro and Risi [2020], the gradient descent approach [Miconi et al., 2018] was so far
restricted to only evolving a single plasticity parameter for each connection instead of a different
Hebbian rule.

Fast Weights Artificial neural networks (ANN) have either a slow form of storing information—
through updating the weights—or, if they are recurrent, a very fast form of information storage in
the form of internal activations. Fast weights seeks to introduce an intermediate time-scale to the
information storage in ANNs [Hinton and Plaut, 1987, Schmidhuber, 1992] and is motivated by
the observation that biological neural networks have learning processes occurring concurrently that
span across very different time scales. Recently, this approach has been successfully applied to
image recognition tasks as well as a model for content-addressable memory [Ba et al., 2016]. In
the context of meta-learning, fast weights has been shown to perform meta-RL by having an ANN
update the weights of a policy network on a per task basis [Munkhdalai and Yu, 2017]. Additionally
Munkhdalai and Trischler [2018] showed that a fast-weights Hebbian mechanism is capable of
performing one-shot supervised learning tasks.
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3 Hebbian meta-learning

In Hebbian meta-learning the goal is to meta-learn Hebbian learning rules that enable an agent to
perform well, and adapt to changes, in its environment.

3.1 Hebbian Learning

The agent acts in an episodic reinforcement learning environment and is controlled by a neural policy
network. At the start of each episode the policy network is initialized with random weights, which
then undergoes changes according to Hebbian learning rules during the episode. Specifically we
use the ABCD Hebbian weight plasticity formalization [Soltoggio et al., 2007] and the weights are
updated at each step of the episode. The change to the weight connecting neuron i and j is

∆wij = ηij (Aijoioj +Bijoi + Cijoj +Dij) , (1)

where oi and oj are the pre- and post-synaptic activation of the neurons and h = {η,A,B,C,D} are
the Hebbian parameters which are fixed during the episode.

3.2 Evolutionary Strategies

The Hebbian parameters are meta-learned on an evolutionary time scale t, using evolutionary strate-
gies (ES) [Salimans et al., 2017]. In evolutionary strategies the goal is to maximize the expected
fitness of a distribution of individuals, maxθ Ez∼p(z|θ)F (z), where F (z) is the fitness of an individual
z and θ parameterize this distribution. We compute the gradient of this objective using the score
function estimator and use gradient ascent to maximize it,

∇θEz∼p(z|θ)F (z) = Ez∼p(z|θ)F (z)∇θ log(p(z|θ))

θt+1 = θt + α
[
Ez∼p(z|θt)F (z)∇θt log(p(z|θt))

]
, (2)

where α is the learning rate. The expectation is evaluated using n samples, the population size. In
order to use ES then, we must define F (z) and p(z|θ). In this paper F (z) is always the accumulated
reward of an episode.

3.3 Individual Learning Rules

For the case of individual learning rules, N synapses each have their own learning rules hi =
[ηi, Ai, Bi, Ci, Di], which are drawn from independent normal distributions with fixed variance σ2

and meta-learned means µ ∈ RN×5. In this case p(z|θ) = p(h|µ) =
∏N
i=1N (hi|µi, σ), where µi

denotes the i’th row of the µ parameters. Inserting into eq. (2) and deriving the gradient this reduces
to the expression in [Najarro and Risi, 2020, Salimans et al., 2017],

µt+1 = µt + α

[
1

σ
Eε∼N (0,I)F (µt + σε)ε

]
,

where ε is a sample from a standard normal N (0, I).

3.4 Shared Learning Rules

To explore the effect of sharing a limited amount of Hebbian learning rules we sample each synapses’
learning rule from a Gaussian Mixture Model (GMM) with M clusters, such that
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k ∼ p(k|λ) ∈ [1, ...,M ]N , λ ∈ RN×M ,

h ∼ N (m|µk, σ) ∈ RN×5 , µ ∈ RM×5 ,

p(z|θ) = p(h|µ, λ) =

N∏
i=1

M∑
k=1

N (hi|µk, σ)p(k|λi) .

Here p(k|λi) = eλik/
∑M
j=1 e

λij , i.e. the softmax categorical distribution parameterized by λi logits
for synapse i and the meta learned parameters are µ and λ. We use automatic differentiation to
compute the gradient of the log likelihood of this distribution with respect to µ and λ, and then use
eq. (2) to update µ and λ.

This approach to assigning learning rules to synapses is the most flexible and direct, but requires
N ×M parameters. However we are only interested in testing the effect of limiting the number of
learning rules, not the number of parameters or bits needed to encode an individual, although those
are interesting directions for future work.

4 Experiments

The first experiment is to replicate the original results of Najarro and Risi [2020] to ensure a
fair comparison. In all experiments we use the same experimental setup, architectures and hyper-
parameters as in Najarro and Risi [2020] except where noted.

Similar to Najarro and Risi [2020] we experiment on the car racing and quadruped locomotion tasks.
We perform leave-one-out cross-validation, with five variations for each tasks. The five variations
for the car racing tasks are: 1) default settings, 2,3) twice and half the road friction coefficient and
4,5) constant force pushing the car west and east. For the quadruped locomotion task the variations
are 1) default settings, 2,3) left and right front leg damage as in Najarro and Risi [2020] and 4,5)
50% longer rear and front legs. We perform leave-one-out cross validation by leaving one variation
out for testing and training on the remaining variations. Specifically, we use eq. (2) to maximize
Ez∼p(z|θ)F ′(z) where F ′ is the fitness function of a meta-task formed by taking the average fitness
across the four training variations of the task.

To test our core hypothesis we evaluate for a varying number of learning rules expressed as a fraction
of the number of synapses such that M = 1

ρN . We vary ρ = [1, 16, 32, 64, 128, 256, N ], where
ρ = 1 corresponds to a learning rule per synapse and ρ = N corresponds to a single learning rule.

We compare to three baselines in all experiments 1) A hebbian meta-learning network with a learning
rule per synapse as in Najarro and Risi [2020], 2) an identical static network with learned weights
and 3) a LSTM baseline with hidden states initialized to zero at the start of each episode [Hochreiter
and Schmidhuber, 1997]. We construct the LSTM baseline by replacing the first densely connected
layer in the static baseline with a LSTM layer and keeping everything else the same. All architectures
are optimized using ES.

5 Discussion

A limitation of our approach to Hebbian meta-learning is that the agent cannot adapt to changes in the
reward function during its lifetime, since it does not observe the reward. The reward is only observed
at the evolutionary time scale. As such all the training and test tasks must share the same reward
function. This is in contrast to common benchmarks in meta RL where the reward function differs
across training and test MDPs. Previous research have proposed modulating Hebbian learning based
on the reward [Abbott, 1990, Krichmar, 2008, Soltoggio et al., 2007]. We leave adapting to changes
in the reward function during the lifetime of the agent to future work.
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