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Abstract

3D Morphable Models have long played a key role in the construction of statistical
shape models. While earlier models employed Principal Component Analysis,
recent work has migrated towards mesh autoencoder models for the construction of
lightweight, non-linear shape models that facilitate state-of-the-art reconstruction
and the capture of high-fidelity details. Doing so results in a loss of interpretability
and regularisation in the model latent space. To address this, we propose PCA
retargeting, a method for expressing linear PCA models as mesh autoencoders and
thereby retaining the gaussianity of the latent space. To encourage the capture of
mesh details outside the expressive range of a PCA model, we introduce “free”
latent space parameters and evaluate their impact on model performance.

1 Introduction

3D Morphable Models (3DMMs) are one of the foremost technologies for the statistical analysis and
modelling of the human face and body. Earlier examples typically employed principal component
analysis (PCA) for model construction [2], however recent years have seen the successful applica-
tion of geometric deep learning leading to impressive gains in model reconstruction accuracy and
representational power. Many of these gains comes from the introduction of convolutional mesh
autoencoders [35] and increased efficiency of mesh convolution operators [5, 13, 15, 17].

As with standard autoencoder models, convolutional mesh autoencoders are subject to the loss of
linear independence and regularity in the latent space that is inherent in PCA models. An example
of where this might be problematic would be an attempt to create a blendshape model using a mesh
autoencoder network. A blendshape model can be considered as a weighted sum of target expressions
that can be combined with a neutral mesh to achieve facial animation [8, 10]. The linear independence
of distinct blendshapes is paramount to their success. As autoencoder models do not offer any control
over the latent space distribution, this linear independence cannot be preserved and autoencoder
models of the human face typically address expressions in isolation [35].

In this paper we propose the concept of PCA retargeting, a means of converting a PCA model to
a mesh autoencoder format. Our aim is to train an autoencoder model to accurately reconstruct a
target mesh while constraining the latent space to mimic the shape parameters the target mesh would
produce in a PCA model. Autoencoders are typically trained end-to-end, where the reconstruction
loss is calculated based on the output of the decoder and backpropagated through the network. This
encourages the model to find an optimal encoding in the bottleneck layer that will permit the decoder
to accurately reconstruct an input from its latent representation. To faithfully retarget a PCA model
as an autoencoder, however, the latent space of the autoencoder model must follow the PCA shape
space as precisely as possible. To enforce this constraint on the latent space, we draw inspiration
from variational autoencoders (VAEs). VAEs can be considered autoencoders whose encoding space
has been regularised during training to ensure desirable properties for data generation [22, 37]. A
Gaussian distribution is often imposed on the latent space, though von Mises-Fisher [12, 44] and
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Dirichlet distributions [21] have also proven effective. This desired latent distribution is achieved by
adding a regularisation term to the loss backpropagated through the model. By imposing a loss on the
model latent space, we aim to compel the encoder to learn the desired latent representation.

The representational power of a PCA model is constrained by the number of linear eigenvectors it
contains, and large models are required to achieve high resolution meshes [3]. To allow the retargeted
model to represent high-fidelity mesh details, we propose to extend the length of the autoencoder
latent vector beyond the number of shape parameters used in the retargeting process. As these
additional parameters will not be constrained to follow the PCA shape parameters, the intention is
that they will model details that are not expressed within the shape variation of the PCA model. We
refer to these additional parameters as “free” latent variables.

Our analysis will address two main questions; 1) Can a PCA model be retargeted as a mesh autoen-
coder? 2) Can “free” latent parameters be used as an inexpensive means of capturing high-fidelity
details? Experiments will be conducted using a large-scale facial dataset, and latent representations
of varying sizes will be explored. We hypothesise that imposing rigid constraints on the latent space
will allow for the training of an autoencoder model that operates as a neural analogue to a PCA model
and that the introduction of “free” latent variables will permit the encoding of high frequency mesh
details that can be lost when later PCA model eigencomponents are omitted.

2 Related Work

3D Morphable Models (3DMMs) facilitate the continuous parameterisation of shape variation for a
given object class by performing dimensionality reduction on training dataset of meshes [2]. Gaussian
Processes [28] and linear blend-skinning [27, 38] have both been used for the construction of 3DMMs,
though Principal Component Analysis (PCA) is perhaps the most prevalent approach [2, 3, 11, 28, 34].
Let X be a set of n densely registered meshes, {x1, x2, ..., xn}, sampled from a given distribution D,
where each mesh has d vertices connected in a fixed topology. By making a gaussianity assumption,
an arbitrary instance, x∗ ∈ D, can then be represented as a linear combination of the k largest
eigenvectors of the covariance matrix of X:

x∗ ≈ x̄+
∑k

i=1
αiUi (1)

where x̄ is the mean shape, Ui is the ith shape eigenvector, and αi is the corresponding eigenvalue.
Given the linear model representation, the largest shape variations are captured within the first
eigenvectors. High resolution models therefore require a larger number of eigenvectors to be retained,
while high finer details can be omitted when later principal components are discarded.

Advances in the field of geometric deep learning have led to the generalisation of neural networks
to non-Euclidean domains, such as graphs and manifolds [6]. These emerging techniques have
been applied across multiple domains, including computer graphics [4, 29], molecular prediction
[43], node classification [23], and social network analysis [32, 40]. Many approaches have been
applied to extend standard 2D convolutions to non-Euclidean domains, including spectral methods
[7, 15, 25, 41], local charting based approaches [4, 26, 29], and convolution operators that act
directly on 3D mesh topology [5, 17]. New methods for graph coarsening have also been developed
[14, 45], while advances in mesh pooling and unpooling operations have led to the introduction of
convolutional mesh autoencoders, an effective means of modelling 3D data [35].

Feature disentanglement permits an intuitive understanding of the latent space of deep generative
models. Supervised methods typically require a-priori knowledge of the nature and quantity of
generative factors [19, 24, 36]. Higgins et.al. presented β-VAE, a reformulation of the standard VAE
framework that allowed for a disentangled representation of generative data factors by introducing a
β coefficient [18]. Mathieu et al. argue that while β-VAE allows for control over the extent of overlap
between latent data encodings, it does little to ensure that the aggregate data encodings conform to
a desired structure. Instead, they present an approach that permits a desired latent encoding to be
achieved by careful choice when defining the prior [30]. GANs [9], Wasserstein Autoencoders [16],
different interpretations of VAEs[24, 39], and mutual information maximisation [1, 20, 42] have also
been applied successfully for feature disentanglement. In this work, as the desired latent encoding is
known in advance, this problem is explored from a supervised angle.
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Figure 1: Network Architecture.

3 Model Architecture and Training

Our mesh autoencoder model follows the architecture design of [5]. The encoder is comprised of
five mesh convolutional and pooling layers. The decoder architecture is the reverse of the encoder;
five convolutional layers, each followed by a mesh unpooling layer. To facilitate the mesh pooling
and unpooling operations, we follow the approach of [35]. In each pooling layer the number of mesh
vertices will be reduced by a factor of 4. Spiral convolutions with a fixed length of 9 will be used in
all convolution layers [17]. The complete network architecture is shown in Figure 1.

The framework will be implemented in PyTorch [33]. Model hyperparameters and loss weights will
be determined using a grid-search strategy.

3.1 Losses

For a given input mesh, x, an L1 reconstruction loss will be applied to the decoder output, x̂.
To encourage the latent vector representation to conform to the desired encoding, zpca, we add a
regularisation term to the loss function. In standard VAE models, the regularisation terms typically
manifests as the Kullback-Leibler (KL) divergence between the desired and achieved encoding
distributions. Here, the desired latent encoding follows a standard normal distribution by design. As
such, the KL regularisation term is replaced by an L1 loss on the difference between the desired latent
encoding, zpca, and the achieved encoding, ẑpca. Defining λrec and λreg as the weights applied to
the reconstruction and regularisation loss, respectively, the updated loss function takes the form:

loss = λrec||x− x̂||+ λreg||zpca − ẑpca|| (2)

3.2 “Free” Latent Variables

In addition to the latent vector components reserved to correspond with the principal components of
the PCA model, we also propose to extend the latent vector size by including l additional variables.
As discussed in the Introduction, PCA models capture the modes of greatest variation in first few
principal components while the later components are reserved for the higher frequency details. These
later components are often omitted for reasons of model size and computational speed, and this can
lead to a “smoothing” of the mesh surface. By adding l “free” variables to the latent vector, we aim
to capture these higher frequency details while preserving the advantage of independence among the
model components provided by the orthogonal bases of the PCA models.

To conform with the distribution of the other latent variables, we would prefer that the distribution
of additional “free” latent variables also take the form of a standard normal distribution with zero
mean and unit variance. A KL divergence will be used to encourage the “free” variables to follow
the desired Gaussian distribution. Defining the PCA latent variables as zpca and the “free” latent
variables as zfree, the complete loss function will take the form:

loss = λrec||x− x̂||+ λreg||zpca − ẑpca||+ λregKL[N (µzfree
, σzfree

),N (0, 1)] (3)

where µzfree
and σzfree

, the mean and standard deviation of the “free” latent variables, will be
calculated per batch during training. The full length of the latent vector is now given as the combined
length of zpca and zfree. For the “free” latent variables, no assumption of independence between
variables will be made, as this criteria is not enforced by the proposed loss function.
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4 Experimental Protocol

Tests will be conducted using latent vectors of size 16, 32, 64, and 128. For each latent vector
size, three models will be trained and the mean and standard deviation results will be reported.
Autoencoder models will be compared to baseline PCA models with the corresponding number of
principal components. The number of model parameters will be recorded in each case.

4.1 Dataset

Models will be evaluated using the MeIn3D facial database [3] which consists of more than 10, 000
scans registered to a template with 28, 431 vertices. Data will be split into 9k training and 1k testing
meshes. Random stratified sampling will be applied to maintain gender, age, and ethnic proportions.

To obtain the desired latent vector encoding for all meshes, a PCA model will be constructed from
the training dataset. The first 128 principal components will be retained. Shape parameter vectors, α,
for each instance will be obtained by projecting the mesh instance onto the model. Following the
probabilistic interpretation of PCA models, each parameter, αi, is an independent random variable.
Each αi follows a Gaussian distribution with zero mean and a variance of λi, where λi is the i-th
PCA eigenvalue. A shape vector with k components can therefore be normalised as follows:

zpca = α1√
λ1
, α2√

λ2
, · · · , αk√

λk
(4)

The normalised vector, zpca, now follows a Gaussian distribution with zero mean and unit variance.

4.2 Autoencoder Accuracy

Encoder-Decoder Accuracy To evaluate the success of the PCA retargeting, we will first inde-
pendently assess the encoder and decoder networks. To assess the encoder accuracy, all meshes
in the test set will be passed through the encoder network and their latent space embeddings, ẑpca,
retrieved. These will be compared to the ground-truth normalised shape parameters, zpca, for the
corresponding meshes. The decoder reconstruction accuracy for a given mesh from the normalised
shape parameters will be determined by passing these parameters through the decoder network. The
reconstruction error will be calculated as the per-vertex euclidean distance between the ground truth
and reconstructed meshes and compared to the reconstruction error for the PCA model.

End-to-end Reconstruction Accuracy To evaluate the model in a holistic manner, each mesh in
the training set will be fed through the autoencoder model and the end-to-end reconstruction error
will be calculated. This error will be compared to the reconstruction accuracy of the PCA model
under the same circumstances; each mesh in the test set will be projected into the shape space of the
PCA model and the retrieved shape parameters will be used to obtain the model reconstruction.

4.3 “Free” latent variables

Experiments will be conducted using 16 and 64 principal components to better understand how the
number of PCA components impacts the presence of high-fidelity mesh details. “Free” variable
lengths of 4, 8, and 16 will be assessed and their conformity to a Gaussian distribution will be
evaluated. The reconstruction error for all meshes in the test set will be calculated and compared to
that of the standard autoencoder model and the PCA model.

High Frequency Details The presence of high-fidelity mesh details will be evaluated via the
Gaussian curvature of the mesh. The Gaussian curvature, K, for a given vertex on a mesh surface
is give as a product of the principal curvatures, κ1 and κ2, at that point [31]. By calculating the
Gaussian curvature at each point for all meshes reconstructed using the autoencoder, the autoencoder
with “free” latent variables, and the PCA model, we can ascertain whether the introduction of the the
“free” latent variables permits an increase in reconstruction detail and, if so, in which mesh regions.
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