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Abstract

Density estimation is the unsupervised task of estimating an unknown probability
density given samples from the density. In this paper we consider a supervised
density estimation setting where, in addition to samples from the target density, one
has access to an auxiliary collection of samples which are known to not be well-
represented according to the target density. We derive two theoretically principled,
highly flexible, and computationally efficient approaches to the supervised density
estimation setting which incorporate the auxiliary samples to improve the density
estimation task. To ascertain the overall usefulness of the supervised density
estimation setting, and our approaches in particular, we propose a few experiments
on models ranging from classic Gaussian mixture models to more recent variational
autoencoders.

1 Introduction

Perhaps one of the most basic problems in statistics is to estimate an unknown probability density
p given samples X1, . . . , Xn ∼ p. This task is also quite common in machine learning where it
fits squarely into the “unsupervised” learning paradigm. Many machine learning settings have been
proposed that blur the lines between more classic settings including “semi-supervised” learning
[32, 31, 3], “weakly-supervised” learning [30], and supervised learning approaches to unsupervised
tasks [22]. A somewhat paradoxical question, which we propose here, is how to construct, or whether
it is even useful to investigate, a supervised approach to density estimation. Specifically we consider
the setting where one has access to two collections of data in Rd, one of which X1, . . . , Xn ∼ p is
distributed according to a target density p, and another collection X̃1, . . . , X̃m ∼ q is distributed
according to a contrast density that is representative of how we do not want our density to look.

As a motivating example for supervised density estimation we consider the use of a density estimator
for anomaly detection where low likelihood examples according to the estimated density are deemed
anomalous [23]. Despite typically being an unsupervised task trained on a collection of nominal data,
it has been observed that incorporating known anomalies into the unsupervised learning objective
is helpful for anomaly detection with density level set estimation [8, 24], even when the anomalous
training samples are not representative of anomalies seen during test time. Though [8, 24] are not
density estimation methods, it is natural to suspect that the inclusion of anomalous samples may
produce better density estimates. In the next section we propose two principled, highly flexible, and
computationally efficient methods for incorporating supervision into density estimation, followed
by a discussion of related works in Section 3. In Section 4 we propose experiments to explore the
behavior of supervised density estimation and determine its value for other use cases.
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2 Proposed Losses

In this section we propose two methods for adding supervision to a density estimation objective. For
a class of distributions F we denote the general density estimation problem as argminp̂∈F R(p̂),
where R is some objective function utilizing the samples X1, . . . , Xn ∼ p. For maximum likelihood
estimation, for example, we have that R(f) = 1

n

∑n
i=1− log (f (Xi)). For the supervised density

estimation setting we propose an objective of the form

argmin
p̂∈F

R(p̂) + λV (p̂) (1)

where λ > 0 and V is a term which penalizes p̂ in some way so as to incorporate supervision into
the objective utilizing samples from a contrast distribution. To help motivate the proposed penalty
terms we will derive population versions which utilize the exact contrast density q followed by finite
sample versions which use the contrast samples X̃1, . . . , X̃m ∼ q.

2.1 Coding Theory Objective

For our first objective we consider p̂ from a coding theory perspective. We would like to enforce that
using a coding scheme optimized for p̂ produces a coding scheme that is more optimal for coding p
than for coding q. This notion can be encapsulated in the following objective, where ε > 0,

argmin
p̂∈F

R (p̂) such that DKL (q‖p̂)−DKL (p‖p̂) ≥ ε. (2)

The inequality constraint in (2) is equivalent to∫
q(x) (log q(x)− log p̂(x)) dx−

∫
p(x) (log p(x)− log p̂(x)) dx ≥ ε.

Incorporating the constant terms into ε′ and multiplying by −1 we get that this is equivalent to∫
q(x) log p̂(x)dx−

∫
p(x) log p̂(x)dx ≤ −ε′. (3)

The left hand side of (3) is not bounded from below, however in [11] it was suggested to use clipping
to resolve this, yielding our first supervised form

V̂base (f) =
1

n

n∑
i=1

max
{
0, D + log p̂

(
X̃i

)
− log p̂ (Xi)

}
(4)

where D is the number of pixels for image data and we will let d = D for non-image data. We will
use (4) as a baseline loss. Our approach is to instead use the Lagrangian form of (2), yielding an
unconstrained optimization problem in the form of (1). We write an equivalent constraint to (3) as

exp

{∫
q(x) log p̂(x)dx−

∫
p(x) log p̂(x)dx

}
≤ δ,

for δ = exp (−ε′). Because the left hand side of the previous inequality is positive we can restate the
original objective (2) in its Lagrangian form

argmin
p̂∈F

R (p̂) + λ exp

{∫
q(x) log p̂(x)dx−

∫
p(x) log p̂(x)dx

}
(5)

where λ > 0. Rewriting the right term in the last line in terms of expectations we have

exp
{
EX̃∼q[log p̂(X̃)]− EX∼p [log p̂ (X)]

}
which gives us our next supervised term

V̂code(f) = exp

 1

m

m∑
i=1

log p̂(X̃i)−
1

n

n∑
j=1

log p̂ (Xj)

 . (6)
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We will now find an upper bound for the right term in (5) that has the form of a sample mean thereby
making it amenable to stochastic gradient descent (SGD) optimization for use with deep methods.
We have that

exp

{∫
q(x) log p̂(x)dx−

∫
p(x) log p̂(x)dx

}
= exp

{∫
q(x) log p̂(x)dx

}
exp

{
−
∫
p(x) log p̂(x)dx

}
= exp

{
EX̃∼q[log p̂(X̃)]

}
exp {EX∼p [− log p̂(X)]}

≤ EX̃∼q[exp{log p̂(X̃)}]EX∼p [exp {− log p̂(X)}] (7)

= EX̃∼q
[
p̂(X̃)

]
EX∼p

[
(p̂(X))

−1
]
= E(X,X̃)∼p×q

[
p̂(X̃)/p̂(X)

]
(8)

where (7) follows from Jensen’s Inequality and the fact that the two factors are non-negative and (8)
follows from statistical independence. If m = n then we have the following finite sample version of
the last expression which can be used in SGD, with a small η > 0 included for stability:

V̂codeSGD (p̂) =

n∑
i=1

p̂(X̃i)

p̂(Xi) + η
. (9)

2.2 Classification Loss

The following loss encourages our density estimate p̂ to be such that there exists a classifier that can
easily differentiate between samples from p̂ and q. For densities f and g let β(f, g) be the Bayes risk
for the classification problem of differentiating between f and g with prior class probabilities 1/2.
The following is the optimization problem we would like to solve

argmin
p̂∈F

R (p̂) + λβ (p̂, q) . (10)

From [21] (see (8) in their work) we have that β(f, g) ≤ 1
2

∫ √
f(x)

√
g(x)dx. Note for x = t we

have that the tangent line at (x, y =
√
x) is given by y −

√
t = 1

2 t
−1/2(x− t). Since the square root

function is concave we have for all t > 0 and x ≥ 0 that
√
x ≤ 1

2

(
x/
√
t+
√
t
)
. Now we have the

following, where γ is some density that is positive on the support of p̂ which is used to get a Monte
Carlo estimate of

∫ √
p̂(x)dx

β (f, g) ≤ 1

2

∫ √
p̂(x)

√
q(x)dx ≤ 1

2
min
t>0

∫ √
p̂(x)

1

2

(
q(x)/

√
t+
√
t
)

=
1

4

(
min
t>0

∫ √
p̂(x)

(
q(x)/

√
t
)
dx+

∫
{x|γ(x)>0}

γ(x)

γ(x)

√
p̂(x)
√
tdx

)

=
1

4

min
t>0

1√
t
EX̃∼q

[√
p̂(X̃)

]
︸ ︷︷ ︸

:=E1

+
√
tEU∼γ

[
γ(U)−1

√
p̂(U)

]
︸ ︷︷ ︸

:=E2

 =: min
t>0

h(t). (11)

Setting the derivative of h(t) equal to zero, we obtain the minimizing t > 0

h′(t) =
1

4

(
−1

2

1√
t3
E1 +

1

2

1√
t
E2

)
=

1

8
√
t3

(tE2 − E1) = 0 =⇒ t∗ =
E1

E2
.

Observe that t∗ > 0 as both expectations are positive. Thus, the value at the minimum is given by

h(t∗) =
1

4

(√
E2

E1
E1 +

√
E1

E2
E2

)

=
2

4

√
E1E2 =

1

2

√
E(U,X̃)∼γ×q

[
γ(U)−1

√
p̂(U)

√
p̂(X̃)

]
(12)
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where (12) follows from statistical independence. For U1, . . . , Um
iid∼ γ we get the following finite

sample version of (12) which is our last supervised term

V̂class (p̂, q) =
1

2

√√√√√ 1

m

m∑
i=1

√
p̂(Ui)p̂(X̃i)

γ(Ui)
. (13)

To make this amenable to SGD we will simply square it, which is a strictly monotonic mapping since
(13) is always nonnegative

V̂classSGD (p̂, q) =
1

4m

m∑
i=1

√
p̂(Ui)p̂(X̃i)

γ(Ui)
. (14)

3 Related Work

The loss in (4) was introduced in [11] as a way to improve anomaly detection utilizing language
and neural autoregressive models. In that paper they propose samples from large, easily available
datasets to be used as anomalies during training, a technique they term outlier exposure. Works
like [13] attempt to unify density estimators with positive and negative examples but do not yield a
single density estimator incorporating both classes of samples. The following are a few settings and
techniques which appear similar to our setting, but are in fact different.
Ranking losses (e.g., contrastive loss [5], triplet loss [4], or angular loss [28]) are used in metric
learning to encourage (dis)similarity among data pairs or triplets in the learned metric. While
not directly utilizable for generative models, these losses bear some similarity to the setting we
consider in this paper. In particular, training with ranking losses encourages learned representations
of similar examples to be close according to some metric (generally, Euclidean), and the opposite for
dissimilar examples. In contrast, our proposed losses do not penalize representations directly, but
rather the associated likelihoods or Bayes risk. In this sense, our proposed losses can be considered
a generalization of ranking losses where (dis)similarity is encouraged with respect to likelihood or
Bayes risk, rather than a metric.
Learning from Positive and Unlabeled Examples (LPUE) [16, 15, 1] addresses the setting where
the learner has access to labeled data from a single positive class distributed according to p and a
collection of unlabeled data which contains examples from both the positive class and some other
class distributed according to q, with q not necessarily unlike p. Both the dataset assumptions and
the learning objective (identifying q or samples coming from q) are unlike the supervised density
estimation setting we present.
In Noise Contrastive Estimation (NCE) [10, 20] one chooses a tractable noise distribution f . An
unnormalized density model can then be obtained by training a classifier that discriminates between
training data X1, . . . , Xn and samples Y1, . . . , Ym ∼ f . That is, the noise distribution f is a known,
auxiliary distribution whose primary purpose is to enable fitting of a model and is not necessarily
unlike p. NCE is not meant to improve learning, as in our case, by providing additional negative
information during model training. In addition, our approach does not require knowing the contrast
distribution q.
Negative Sampling [19] was proposed in the context of natural language processing as an adaptation
of NCE that only needs samples from the noise distribution f , but does not require evaluating it. Like
NCE it learns an unnormalized density model by training a classifier to discriminate between training
data and samples from the noise distribution. However, it modifies the learning objective of NCE,
regarding f as a constant. While Negative Sampling has been reported to work well in practice, this
“hack” means that it loses the asymptotic consistency guarantees of NCE.

4 Experiments

Here we propose experiments to determine the usefulness and analyze the behavior of a supervised
approach to density estimation. For all of our experiments we will include results for the unsupervised
baseline λ = 0, the supervised baseline (4), and our proposed penalty terms (6) or (9) and (13)
or (14), depending on the need to use SGD. As before X1, . . . , Xn are samples from our target
distribution p and X̃1, . . . , X̃m are samples coming from a contrast distribution q. We will let γ
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from the classification loss be a multivariate t-distribution with 3 degrees of freedom with mean
and covariance set to match the mean and covariance of the target samples for the low-dimensional
experiments. To avoid estimating a high dimensional covariance matrix for the image dataset we will
set the covariance to be the identity times the variance of a randomly selected entry of 100 randomly
selected image samples. For all the experiments we will include results for 10 values of λ over a
logarithmic scale from λ = 0 to a λ which demonstrates the limiting behavior as λ→∞. We leave a
bit of flexibility in our experiments and will select the maximum value of λ by hand since we do not
yet know the appropriate scale for λ.

4.1 Models

To allow for a comprehensive evaluation of our approach we will perform experiments with a variety
of density estimation methods which we briefly list here.

Variational Autoencoder (VAE): We will use the “plain VAE” architecture described in Section 4
and Table 1 of [14] which is a standard convolutional VAE architecture with a 4-layer encoder and
5-layer decoder, accepting inputs of size 3× 64× 64. We will optimize this model via SGD on the
ELBO loss (R in our formulation) as given in Equation (2)-(4) of [14]. Following [14] we will use
the RMSProp optimizer, a learning rate of 0.0003, a batch size of 64 and train until convergence.
Since we are not sure how our loss terms affect optimization behavior we may adapt these parameters
somewhat for our experiments. Note that the penalty term introduced by our SGD coding theory loss
(9) relies on a probability ratio which might not be well preserved when one considers instead the
ratio of ELBOs of the two probabilities. For this reason, we will resort to multi-sample Monte Carlo
methods to obtain a better approximation for this penalty term [2].
Kernel Density Estimator (KDE): We consider the space of weighted KDEs with kernel centers
coming from the target dataset using a Gaussian kernel, i.e. the space{

n∑
i=1

wik(Xi − ·) |
n∑
i=1

wi = 1 and wi ≥ 0∀i

}
.

For our R term we use the following objective mentioned in [12, 27], R(f) =
1
n

∑n
i=1 ‖f − k(Xi − ·)‖22 whose minimizer is the standard KDE. The bandwidth parameter, which

is also used in R, will be chosen via maximum likelihood leave one out cross validation (more details
on this are included in Section 4.2). We will optimize the weighting vector w using projected gradient
descent on the supervised objective.
Gaussian Mixture Model (GMM): Models will be optimized using expectation maximization with
the V term included in the maximization step. The maximization step will be performed using gradi-
ent descent. The number of components will be selected using the standard approach of minimizing
the Bayesian Information Criterion, k log n− 2`, where k is the number of parameters of a model
under consideration, n the number of samples available for fitting, and ` is the log-likelihood of the
model under consideration [25].

4.2 Experimental Scenarios

Correcting Blurry Images in VAEs: It has often been noted in the literature that VAE models tend
to produce less visually appealing samples compared to other types of deep generative models such as
GANs or autoregressive models. In particular, samples from VAEs often appear blurry. Explanations
and approaches to solve this issue have primarily focused on model architecture and expressiveness
[29, 18, 26, 6, 9] as well as the similarity metric used in image space [14, 7]. We investigate whether
the undesirable generation of blurry images from VAEs can be corrected through supervised density
estimation. For this, we train a VAE on the Celeb-A dataset [17] downsampled to 64× 64 (the target
distribution). As contrast dataset we will use X̃1, . . . , X̃m comprising training samples to which
randomized amounts of Gaussian blur have been applied. We will choose the parameters of the blur
kernel such that the contrast samples exhibit a visually similar amount of blur as samples from the
unsupervised VAE baseline. We will include random samples from the blurry contrast distribution
and the unsupervised VAE baseline for visual comparison. Randomly generated images for the
various λ parameters will be presented.
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General Exploration: Here we will explore the effect of supervised density estimation by con-
structing estimators for three simple, two-dimensional, classification datasets. For a classification
dataset let X = X1, . . . , Xn ∼ pX and Y = Y1, . . . , Yn ∼ pY be the training samples from the
two classes. Both classes will be estimated in a supervised way using the same model class, either
a KDE or GMM, thus yielding a pair of models p̂X and p̂Y . We will perform experiments using
both KDEs and GMMs since their R losses are quite different and may yield appreciably different
behaviors for the supervised density estimation setting. We now describe how we will construct
the estimator p̂X , with p̂Y being constructed analogously. To perform hyperparameter selection
for p̂X we first construct an estimator using the same model class, ĝX , using only X , so there is
no supervised aspect and ĝX is just the vanilla KDE or GMM. The model hyperparameters for ĝX
(bandwidth or component number) are selected using the respective criterion described in Section 4.1
and will be used for the supervised density estimator p̂X . The estimator ĝX is only used for parameter
selection so it is discarded. Using the previously selected model hyperparameters p̂X will be fit using
X as target samples and Y as contrast examples. For the various values of λ we will report selected
pseudocolor plots of the estimators to demonstrate the effect of the supervised terms as λ varies.
Using the testing data we will additionally report Monte Carlo estimates of the KL-divergence and
L2 distance between the supervised density estimators p̂X , p̂Y and their respective target densities
pX and pY . For model fitting we will use 100 samples for each class. We use three two-dimensional
datasets to investigate different amounts of overlap: two moons (no overlap), Banana (some overlap),
and two two-dimensional Gaussian distributions N (0, I) and N

([
0, 12
]
, I
)

(significant overlap).

Enforcing Constraints Enforcing distributional constraints in a density estimator can be a difficult
task. For the supervised density estimation setting one can simply provide examples of constraint
violation through X̃1, . . . , X̃m instead of analytically integrating the constraints into the model. For
this experiment we will use the KDE and GMM with p being the two dimensional multivariate
Gaussian N (0, I) truncated to the unit ball (reject samples lying outside the unit ball) with n = 50
and these samples also being used for hyperparameter selection. We set q to be the uniform distribution
on [−2, 2] × [−2, 2], rejecting samples lying inside the unit ball, with m = 200. The model
hyperparameters will be set using the same method as the “General Exploration” experiment using
the target dataset. We will report the KL-Divergence and L2 distance between p. Selected heatmaps
of p̂ will also be included.
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