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Abstract

Learning discriminative features plays a significant role in action recognition. Many
attempts have been made to train deep neural networks by their labeled data. How-
ever, in previous networks, the view or distance variations can cause the intra-class
differences even larger than inter-class differences. In this work, we propose a new
contrastive self-supervised learning method for action recognition of unlabeled
skeletal videos. Through contrastive representation learning by adequate compo-
sitions of viewpoints and distances, the self-supervised net selects discriminative
features which have invariance motion semantics for action recognition. We hope
this attempt can be helpful for the unsupervised learning study of skeleton-based
action recognition.

1 Introduction

Action understanding is a fundamental study in the computer vision field. Compared with RGB
images, body joint time-series (skeletons) are effective descriptors of actions, which are robust against
the background and lighting changes. Since each joint is easily identified by a 2D or 3D position
vector, skeleton sequence becomes a high-level and abstract representation of an action. Although
recent methods have achieved remarkable progress with the development of deep neural networks,
most methods rely on strong supervision on action labels. Large-scale data annotation is laborious and
expensive, even impractical for complex data such as videos. Furthermore, annotation is a challenging
problem by itself, since some action classes are ambiguous, which are up to the interpretation of
each annotator for a given sequence. Thus, unsupervised methods that do not use labeled data are
necessary for skeleton action recognition.

Learning effective motion representations without human supervision is a long-standing and chal-
lenging problem. Existing approaches [8] are mostly based on the encoder-decoder architecture.
Specifically, given a skeleton action sequence as the encoder input, the decoder predicts the encoder’s
input sequence. But this idea needs to re-generate each frame in a sequence, which is computationally
expensive and often ignores the semantic association between the encoder input and the decoder out-
put. In that case, the generality of the learned representation is limited. Furthermore, the auto-encoder
will not be able to achieve efficient performances without particular training strategies [8]. Inspired
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by the recent successful discriminative approaches in the latent space [1, 2, 7], here we try to obtain
effective feature representations of skeleton sequences under a simple contrast learning framework.

Previous approaches [3, 6] have proven that one of the key challenges in action recognition lies in
the large variety of action representation when motions are captured from different viewpoints. But,
in reality, the same action can be easily recognized by two observers when they stand at different
viewpoints or distances. This observation inspires us to obtain effective feature representations under
a contrastive self-supervised learning framework. Accordingly, we define contrastive prediction
tasks by the composition of multiple data augmentation operations (i.e. view variations). And
then we maximize the agreement between different augmented views of the same data example
via a contrastive loss in the latent space. Through contrastive representation learning by adequate
compositions of viewpoints and distances, the self-supervised net selects discriminative features
which have invariant motion semantics for action recognition.

2 Related Work

Numerous approaches have been introduced particularly for human action recognition. Most of them
are supervised where an annotated set of actions and labels should be provided for training. In an
unsupervised setup, the problem of action recognition is much more challenging and only a few
methods have been proposed. In this section, we give a brief review on the unsupervised method and
the skeleton action recognition by variant of viewpoint and distance.

2.1 Unsupervised Learning in Skeleton Action Recognition

The unsupervised setup has advantages for action recognition since it does not require the labeling
of sequences. When additional action appears, the unsupervised networks do not need re-training.
This kind of method typically aims to obtain an effective feature representation by predicting or
regenerating future frames of input sequences. Srivastava et al. [4] proposed a recurrent-based
sequence (Seq2Seq) model as an autoencoder to learn the representation of a video. Zheng et al.
[5] proposed a GAN encoder-decoder(LongTGAN). The decoder attempts to re-generate the input
sequence and the discriminator is used to discriminate whether the re-generation is accurate. Su
et al. [8] make the decoder and the encoder self-organize their hidden states into a feature space
which clusters similar movements into the same cluster and distinct movements into distant clusters.
The feature representation used for action recognition is taken from the final state of the encoder’s
hidden representation. However, these typical encoder-decoder-based unsupervised methods are
computationally expensive and rely on particular training strategies. We explore to learn robust
and efficient features representation based on a simpler yet effective idea in the contrastive learning
framework.

2.2 Variant of Viewpoints and Distance in Skeleton Action Recognition

For humans, it will not affect us to recognize the action class from arbitrary observing viewpoints
and distances. Human actions can be captured from arbitrary camera setups, while it is a challenging
problem for recognition algorithms. Researchers have paid much attention to this issue and proposed
various view-invariant approaches. Zhang et al. [3] proposed a view-adaptive idea to leverage
content-dependent and view-adaptation models to automatically learn and determine the suitable
viewpoint. And for each sequence, the skeletons are transformed into representations under those
views. This improvement has proved that viewpoints are crucial for the model to learn features
representation in skeleton-based action recognition. Furthermore, the distance of a subject to the
camera may influence the scale of the skeletons. In order to learn the robust and effective features
representation in an unannotated skeleton sequence, we design a simple contrastive learning method
based on the idea of semantic invariance under the variant of distance and viewpoint.

3 Methodology

We learn our feature representations by maximizing agreement between different viewpoints and
distance setups of the same skeleton sequence via the contrastive loss in the latent space. As
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Figure 1: The framework for contrastive learning of skeleton sequence using the semantic invariance
under the variant of distance and viewpoint. Two separate transformations of viewpoint and distance
are applied to a given skeleton sequence to obtain a correlated pair. A base encoder network and a
projection function f(·) are trained to maximize agreement by using a contrastive loss.

illustrated in Figure 1, we just using the base encoder network (e.g. ResNet [11] and GCN [12])
and representation vector h for following action recognition task.

3.1 View Augmentation for Contrastive Representation Learning

The raw 3D skeleton is recorded corresponding to the camera coordinate system (global coordinate
system), with the origin located at the position of the camera sensor. Note that the input skeleton
Vt to our system as in Figure 1 is the skeleton representation under this initial camera coordinate
system. To be insensitive to the initial position of action, for each sequence, we translate the global
coordinate system to the body center of the first frame as our new global coordinate system. One can
choose to observe the action from stochastic positions. Thanks to the availability of the 3D skeletons
captured from a fixed view, it is possible to set up a movable virtual camera and observe the action
from new observation viewpoints. The given skeleton can be transformed into a representation under
the movable virtual camera coordinate system, which is also referred to as the observation coordinate
system.

Given a skeleton sequence S with T frames, under the global coordinate system, we denote the set
of joints in the t-th frame as Vt = {vt,1, · · · ,vt,J}. For the t-th frame, we assume the movable
virtual camera is placed at a stochastic viewpoint and distance, with the corresponding observation
coordinate system obtained from a translation by dt ∈ R3, and a rotation of αt, βt, γt radians
anticlockwise around the x-axis, y-axis, and z-axis, respectively, of the global coordinate system.
Therefore, the representation of the j-th skeleton joint v′t,j =

[
x′t,j , y

′
t,j , z

′
t,j

]T
of the t-th frame

under this observation coordinate systemO is

v′t,j =
[
x′t,j , y

′
t,j , z

′
t,j

]T
= Rt × (vt,j − dt) . (1)

Rt can be represented as
Rt = Rx

t,α ×Ry
t,β ×Rz

t,γ , (2)
where Ry

t,β denotes the coordinate transformation for rotating the original coordinate system around
the y-axis by βt radians anticlockwise, which is defined as

Ry
t,β =

[
cos (βt) sin (βt) 0
− sin (βt) cos (βt) 0

0 0 1

]
. (3)

Similarly, Rx
t,α and Rz

t,γ denote the coordinate transforms for rotating the original coordinate
system around the x-axis by αt radians, and around the z-axis by γt radians anticlockwise, respec-
tively. Note that all the skeleton joints in the t-th frame share the same transform parameters, i.e.,
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αt, βt, γt, dt, considering that the changing of viewpoints and distance is a rigid transformation.
Given these transformation parameters, the skeleton representation Vt = {vt,1, · · · ,vt,J} under
the new observation coordinate can be obtained from Eq.1. Besides, the viewpoint and distance
can be varied for different frames or on a sequence level. The key problem becomes how to obtain
an effective feature representations in skeleton sequence under the contrast learning framework by
adequate compositions of viewpoints and distances.

3.2 The Contrastive Learning Framework

Firstly, given a skeleton sequence Vt that is captured at an initial position and orientation, we adopt
two stochastic transforms setups on it to provide a positive pair, denoted Vi,t and Vj,t. Secondly, a
base encoder network that extracts representation vectors h from transformed skeleton sequences.
Similar to other typical contrastive learning methods, this simple framework design conveniently
decouples the predictive task from other components such as the base encoder network architecture,
and this base encoder network is shared by both branches of our framework. The base encoder
network serves as the skeleton-based motion features extractor. Here, we can adopt the commonly
used GCN [12]or ResNet [11]scheme to extract spatial and temporal features. Finally, projection
function f(·) will map representations to space where contrastive loss is applied. We opt for simplicity
and use 2-layer MLP as a projection function. The base encoder network and projection function are
trained to maximize the agreement by using contrastive loss. After that, we just use the pretrained
base encoder network and the representation vector h for downstream tasks.

We randomly sample a minibatch of N examples and define the contrastive prediction task on pairs
of view-augmented examples derived from the minibatch, resulting in 2N data points. For a given
positive pair, we treat other 2(N − 1) as negative samples. The contrastive loss function is used
to maximize the agreement between positive pair, meanwhile minimizing the agreement between
negative pairs. Here, we adopt a common formulation of loss function used in the previous contrastive
learning work. Then the loss function of a positive pair of examples (i, j) is defined as

`i,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k 6=i] exp (sim (zi, zk) /τ)
, (4)

where sim(zi, zj) = zi
>zj/‖zi‖‖zj‖ denotes the dot product between `2 normalized zi and zj

(i.e. cosine similarity). 1[k 6=i] is an indicator function evaluating to 1 iff k 6= i and τ denotes a
temperature parameter. After that the final loss function is

L =
1

2N

N∑
k=1

[`(2k − 1, 2k) + `(2k, 2k − 1)]. (5)

As illustrated in Eq.5, the final loss is calculated across all positive pairs, both (i, j) and (j, i).

4 Experimental Protocol

Here, we lay out the protocol for our empirical studies, which aims to understand different design
choices in our framework and improve representation quality by combining our findings.

4.1 Dataset and Metrics

For learning feature representations without labels by the base encoder networks, we conduct
unsupervised pretraining on NTU-RGB+D 60 and NTU-RGB+D 120. To evaluate the learned
representations, we follow the widely used linear evaluation protocol, where a linear classifier is
trained on the representation vector obtained from the frozen base neural network. The test accuracy
is used as a proxy for the representation quality.

4.1.1 NTU-RGB+D 60 Dataset

The NTU RGB+D 60 [9] is a large-scale action recognition dataset collected by three Kinect cameras
simultaneously. It contains 56,578 skeleton sequences and 60 action classes performed by 40
different subjects. Each human skeleton is represented by 25 joints with 3D coordinates. The authors
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recommend evaluating the model performance under two settings: (1) Cross-Subject(X-Sub), where
half of 40 subjects are used for training and the rest for testing. (2) Cross-View(X-view), where the
sequences captured by two of three cameras are used for training, and those captured by the last
cameras are used for testing.

4.1.2 NTU-RGB+D 120 Dataset

This dataset [10] is an extension of NTU-RGB+D 60 and currently the largest dataset for 3D action
recognition. It contains 114,480 skeleton sequences and 120 action classes performed by 106 different
subjects. It provides two types of evaluating setting: (1) Cross-Subject(X-Sub), where half of 106
subjects are used for training and the rest for testing. (2) Cross-Setup(X-Set), where the sequences
captured by half of cameras are used for training and the rest for testing.

4.2 Default Setting

Benefitting from the experiences of several previous contrast learning methods, we realize that
contrastive learning benefits from the larger batch size and more training steps compared to supervised
learning. Thus, we will conduct training experiments with slightly larger batch sizes and steps
purposefully. However, training with a large batch size may be unstable when using standard
SGD/Momentum with linear learning rate scaling. To stabilize the training, we use the LARS
optimizer for all batch sizes. Besides, in distributed training with data parallelism, the mean and
variance of Batch Normalization (BN) are typically aggregated locally per device. In contrastive
learning, as positive pairs are computed in the same device, the model can exploit the local information
leakage to improve the prediction accuracy without improving representations. We address this issue
by aggregating BN mean and variance overall devices during the training.

4.3 Variant of Viewpoints and Distance for Contrastive Representation Learning

Previous work has realized that viewpoint is crucial for features representation in supervised methods.
Furthermore, the distance of a subject to the camera does influence the scale of the skeletons.
To exploit this semantic invariance under the variants of distance and viewpoint, we conduct a
contrastive learning framework for learning robust feature representations in an unannotated skeleton
sequence. In the following experiments, we will adopt variants of viewpoints and distance to define
the contrastive prediction task in a systematic way. We consider that frame-wise transformation is
inferior to the sequence level transformation because the former loses more information, e.g. the
motion across frames. Thus, we will conduct transformations on the sequence level in following
experiments. To comprehensively study the impact of viewpoint and distance, we define positions
of raw 3D skeletons are initial state, and provide several viewpoints and distance transformations,
respectively. For each viewpoint setup, α, β, γ are randomly selected from the degree set (i.e.
0◦, 60◦, 120◦, 180◦, 240◦, 300◦). For each distance setup, d is a random times the unit distance
where the alternative multiplier is 0 ∼ 5×. To understand the effects of individual transformation
of the skeleton and the importance of transformations composition, the experiment will be repeated
multiple times:

• on stochastic viewpoints and distance setups with alternative α, β, γ, d options.
• on stochastic viewpoints setups with random α, β pair and a fixed γ.
• on stochastic viewpoints setups with random α, γ pair and a fixed β.
• on stochastic viewpoints setups with random β, γ pair and a fixed α.
• on stochastic distance setups with a fixed viewpoints setup.
• with base encoder architectures of different complexity (i.e. models with varied depth and

width).
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