Learning representational invariance instead of categorization
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Abstract

The current most accurate models of image object cat-
egorization are deep neural networks trained on large la-
beled data sets. Minimizing a classification loss between
the predictions of the network and the true labels has proven
an effective way to learn discriminative functions of the ob-
ject classes. However, recent studies have suggested that
such models learn highly discriminative features that are
not aligned with visual perception and might be at the root
of adversarial vulnerability. Here, we propose to replace
the classification loss with the joint optimization of invari-
ance to identity-preserving transformations of images (data
augmentation invariance), and the invariance to objects of
the same category (class-wise invariance). We hypothesize
that optimizing these invariance objectives might yield fea-
tures more aligned with visual perception, more robust to
adversarial perturbations, while still suitable for accurate
object categorization.

1. Introduction

Image object categorization performance dramatically
increased with the successful training of deep artificial
neural networks. Instead of using handcrafted features,
DNNs automatically learn highly discriminative features
from large labeled data sets. Such impressive performance,
reminiscent of human visual object categorization, and the
fact that some similarities have been found [7] between the
features learned by DNNs and the activations measured in
the high-level visual cortex can make us think that neural
networks solve visual object recognition in a similar way to
how the brain does. However, important differences remain.

A remarkable example of the mismatch between DNNs
and primate visual perception is the well-known vulnera-
bility of the former to adversarial perturbations [13], which

make DNNGs classify instances in a perceptually implausible
way. Recent work [6] has suggested that adversarial vulner-
ability might be caused by highly discriminative features
present in the data yet incomprehensible to humans. No-
tably, this is only one example of the differences between
current artificial and biological visual object perception.

While for many applications a high discriminative per-
formance is enough, disciplines such as computational neu-
roscience demand models that reasonably match some as-
pects of human perception. Besides, we believe that explor-
ing the connections between computer vision and biological
vision [10] and pushing the development of artificial neural
networks towards more perceptually aligned solutions, can
help us better understand the generalization properties of
DNNSs and, potentially, obtain better, more robust models.

One step towards the integration of deep learning and
neuroscience is to incorporate properties of visual percep-
tion and the visual cortex into the computer vision algo-
rithms. Rather than the architectural aspects, here we focus
on the learning objective. While the most accurate models
for image object recognition are trained by minimizing a
loss between the predicted and the true class of the image
samples, it has been argued that the visual brain develops
with little supervised information [1]. Although the specific
mechanisms that yield robust object recognition in the brain
are yet to be well understood, a well established theory is
that invariance may play an important role.

It has been proposed [ 4] that a major property of biolog-
ical vision is the increasing invariance of neural populations
along the processing hierarchy towards identity-preserving
transformations of the objects. Moreover, it is widely ac-
cepted that higher areas of the visual cortex form similar
patterns of activation within relevant object categories [3].

In this paper, we propose to incorporate these invariances
into the optimization of DNNs trained on object categoriza-
tion data sets. In particular, we combine data augmenta-



tion invariance [5] and class-wise invariance [2] as a single
semi-supervised objective. We hypothesize that the features
obtained through invariance learning may be more aligned
with visual perception, less vulnerable to adversarial pertur-
bations, while still suitable for object categorization.

2. Related work

The semi-supervised learning (SSL) literature (see [ 1]
for a review of recent methods) offers a wide range of ap-
proaches that aim at exploiting desirable invariance prop-
erties in the data and the learning algorithm. Ladder net-
works [12] jointly optimize the classification objective and
a layer-wise denoiser. Data augmentation has been used be-
fore as a source of stochastic variability during training, to-
gether with dropout, random max-pooling and other sources
of randomness [9]. Typically in SSL, the unsupervised ob-
jective is used to complement the classification objective to
more efficiently learn from fewer labeled examples.

In contrast, our focus is on learning representations with
desirable properties inspired by biological vision and per-
ception, by fully replacing the classification objective with
data augmentation and class-wise invariance. Thus, we do
not use perceptually irrelevant sources of variability, such as
dropout. Our method may also be able to efficiently learn
from fewer data and, for that purpose, we explore the trade
off between the unsupervised (data augmentation) and the
supervised (class-wise) invariance objectives.

3. Methods

This section introduces the two learning objectives that
we propose as an alternative to the classification loss: data
augmentation and class-wise invariance.

3.1. Data augmentation invariance

Data augmentation invariance has been recently pro-
posed [5] as a simple way of learning features robust to
identity-preserving transformations. The authors showed
that the deep features learned by a standard convolutional
neural network are not more robust than in the pixel space
to the transformations used in data augmentation schemes,
such as rotation, scaling or brightness adjustment. How-
ever, adding a term to the loss function that promotes the
similarity between the representations of transformations of
the same object enables learning robust features while keep-
ing the same categorization performance or higher.

We believe that learning such invariant representations
is a desirable property and is motivated by the invariance
observed along the visual ventral pathway of the primate
brain [14]. Interestingly, data augmentation invariance is
a fully unsupervised objective, since it does not require la-
beled data. Yet, data augmentation invariance alone may
bias the model towards learning trivial, useless features. We

believe that some degree of supervision might be necessary
and this can be provided by class-wise invariance.

3.2. Class-wise invariance

Class-wise invariant representation learning [2] was in-
troduced as a regularization term that encourages similarity
in the representations of objects from the same class. The
authors showed that class-wise invariance helps improve
generalization, especially when few examples are available.

Class-wise invariance is interesting because, in spite of
being a supervised algorithm, it sets the learning objective
on the intermediate features, rather than solely on the clas-
sification with the top-most features. However, used on its
own it would possibly be subject to some of the same un-
desirable properties of purely supervised methods. We hy-
pothesize that combined, data augmentation and class-wise
invariance alone may learn robust, discriminative features.

3.3. Learning objective

Let E(Dl)A be the data augmentation invariance loss and

Eg) the class-wise invariance loss at layer [ of a neural net-
work model with L layers. We propose to optimize, through
stochastic gradient descent, the following overall objective:
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where ") and B! are scalars that control the degree of
similarity between the features of augmented samples and
of objects of the same category, respectively, at each layer [
of the architecture. Given a data set of size N, we construct
each mini-batch B by randomly sampling K images and
generating M stochastic augmentations for each of them.
Thus, each batch consists of |B| = K x M data points.

We define the data augmentation invariance loss identi-
cally as in [5]:
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where Sy, are the subsets from B formed by augmented
versions of the same seed sample xj. For the class-wise
invariance loss, instead of using the exact definition from
[2], we rather use a parallel definition to Equation 2, for
convenience, which keeps the same spirit—to promote the
similarity of representations of images from the same class:
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where 7, are the subsets from B formed by images of
the same object class r. Regarding the similarity metric,
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d® (24, xj), the authors of [5] tested the mean squared dif-
ference and in [2] three metrics were tested, but the squared
Euclidean distance was identified as the most successful.
Therefore, we consider the mean squared difference a rea-
sonable, meaningful and computationally efficient choice.
Nonetheless, the proposed method allows for other metrics,
which would be interesting to explore in the future.

4. Experimental protocol

This section first describes the essential experiments that
we will perform to assess our proposal and then some other
desirable tests that would shed more light on our algorithm.

4.1. Essential experiments

To the extent possible and applicable, we will follow the
guidelines in [11] to assess SSL algorithms. Initially, we
will test our invariance learning on two architectures, Wide
ResNet and All-CNN, and train on CIFAR-10/100. First,
we will need to verify that the objective defined in Equa-
tion 1 is optimized and thus the model converges. Ideally,
the model should learn representations such that the classes
form separate clusters and, in turn, transformations of the
same data point are close to each other (see Figure 1).
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Figure 1: Simulation of a desirable projection of the fea-
tures in two dimensions. Augmented versions of the same
data point are plotted with exactly the same color.

Such a visualization of the learned features could be ob-
tained through techniques such as t-SNE. Yet, we plan to
perform additional tests. To assess the robustness of the fea-
tures, we will compute the similarity of augmented test im-
ages with alternative metrics, for instance the recently pro-
posed centered kernel alignment (CCK) [8]. To test whether
the learned features are indeed useful for categorization, we
will train both a linear model and a neural network with one
hidden layer with the features of the last layer (L) of our
invariance learning model. A successful model should not
perform significantly worse than the baseline model trained
with the cross entropy loss.

Although it is improbable that our proposal completely
solves the adversarial vulnerability, it may help increase the

robustness. Therefore, we will assess the adversarial ro-
bustness of our invariance learning model by creating both
white- and black-box attacks, using the fast gradient sign
method (FGSM) and projected gradient descent (PGD).
Regarding the hyperparameters, we will explore which
a® and B! guarantee the joint optimization of £, and
[Z(cl) and good classification performance. A reasonable ap-
proach would be to set @ = >, a(¥) and 8 = 3, BY such
that « = 1 — 3 and progressively increase the value of
during training, such that the class-wise invariance becomes
more important only provided the features are sufficiently
robust. Similarly to [5], both a® and ﬁ(l) could be dis-
tributed exponentially, such that higher layers become more
invariant, as it is thought to occur along the visual cortex.
We will use the data augmentation schemes used in [5, 4]
and, in the spirit of [4], we will not include any explicit reg-
ularization (e.g. weight decay and dropout) in our models.

4.2. Other desirable experiments

In addition to the essential experimental setup described
in 4.1, other tests would shed more light on the benefits and
limitations of the proposal. In particular, the priority should
be to train the models on ImageNet.

Interesting, yet out of the scope of this paper, would be
to compare the representations learned with the proposed
model to the activations measured through fMRI in the vi-
sual cortex [7], since one motivation for this proposal is to
learn more human-like features.

5. Results

The purpose of this section is to briefly outline the main
findings of this work, both positive and negative, so as to
facilitate future research in this direction.

The most ambitious hypothesis of this paper, that is that
it may be possible to fully replace the standard classification
loss by the joint optimization of class-wise and data aug-
mentation invariance, has not yet been possible to demon-
strate through the methods presented in Section 3: we could
not achieve comparable classification accuracy on CIFAR-
10/100 by training a single-layer neural network with the
output features learned by the models trained solely with
the invariance objectives.

Note, however, that this was an ambitious and challeng-
ing task. In order to better understand the effect of the in-
variance losses, we looked into the representations of the
top layer of All-CNN, trained on CIFAR-10, as proposed in
Section 4.1. We compared a baseline, purely categorization
model, a purely invariance learning model (with o = 0.1,
B = 0.9) and a model trained with both invariance and cat-
egorical losses. Figure 2 shows the dissimilarity matrices of
the top-layer features of the three models.

Interestingly, clear clusters (groups of classes) are
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Figure 2: Dissimilarity matrix of models trained with different losses, constructed with 100 examples of each class.

formed when the models are trained with invariance learn-
ing, while the dissimilarity matrix of the standard model is
fairly homogeneous. Remarkably, the main clusters formed
through invariance learning correspond to the animate and
inanimate classes, a separation consistently observed in the
primate visual cortex [7]. Furthermore, although the mixed-
losses model trained achieves comparable classification per-
formance to the baseline model (91.9 % and 93.2 % respec-
tively), its representational organization is more similar to
the pure invariance learning model (21 % accuracy).

Since both its accuracy and its representational pattern
(Figure 2b) indicate that pure invariance learning manages
to separate only two groups of classes, we also computed
the explained variance by the first principal component of
the top-layer representations and found it to be extremely
high, 0.996, while the standard model’s is 0.085. Surpris-
ingly, it is also high in the model with mixed losses: 0.743.
This suggests that the current form of the invariance losses
constrain the model towards using one or few dimensions,
what prevents it from discriminating multiple classes.

To further evaluate this idea, we trained models to per-
form binary classification on pairs of classes from CIFAR
and found that, in this case, not only the invariance learning
models do match the categorization models in terms of clas-
sification accuracy, but they achieve a better class separation
which results in a largely improved adversarial robustness.

6. Conclusion

In sum, although the results revealed that the present pro-
posal of invariance learning is not yet comparable to cat-
egorization models for multivariate classification, the rep-
resentational organization of the features, which resembles
patterns observed in the visual cortex, and the improved ad-
versarial robustness suggest that invariance instead of cate-
gorization may be a promising research avenue to follow.
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